Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data

Biometrics. 2011 Sep;67(3):819-29. doi: 10.1111/j.1541-0420.2010.01546.x. Epub 2011 Feb 9.

Abstract

In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling of longitudinal and time-to-event data. In this article, we consider this modeling framework and focus particularly on the assessment of the predictive ability of the longitudinal marker for the time-to-event outcome. In particular, we start by presenting how survival probabilities can be estimated for future subjects based on their available longitudinal measurements and a fitted joint model. Following we derive accuracy measures under the joint modeling framework and assess how well the marker is capable of discriminating between subjects who experience the event within a medically meaningful time frame from subjects who do not. We illustrate our proposals on a real data set on human immunodeficiency virus infected patients for which we are interested in predicting the time-to-death using their longitudinal CD4 cell count measurements.

MeSH terms

  • Biometry / methods*
  • CD4 Lymphocyte Count
  • CD4-Positive T-Lymphocytes / pathology
  • HIV Infections / blood
  • HIV Infections / mortality
  • Humans
  • Longitudinal Studies*
  • Probability*
  • Survival Analysis*
  • Time