ProactiveVector control strategies and improved monitoring and evaluation practices for dengue prevention

J Med Entomol. 2009 Nov;46(6):1245-55. doi: 10.1603/033.046.0601.

Abstract

Despite tremendous efforts by public health organizations in dengue-endemic countries, it has proven difficult to achieve effective and sustainable control of the primary dengue virus vector Aedes aegypti (L.) and to effectively disrupt dengue outbreaks. This problem has multiple root causes, including uncontrolled urbanization, increased global spread of dengue viruses, and vector and dengue control programs not being provided adequate resources. In this forum article, we give an overview of the basic elements of a vector and dengue control program and describe a continuous improvement cyclical model to systematically and incrementally improve control program performance by regular efforts to identify ineffective methods and inferior technology, and then replacing them with better performing alternatives. The first step includes assessments of the overall resource allocation among vector/dengue control program activities, the efficacy of currently used vector control methods, and the appropriateness of technology used to support the program. We expect this will reveal that 1) some currently used vector control methods are not effective, 2) resource allocations often are skewed toward reactive vector control measures, and 3) proactive approaches commonly are underfunded and therefore poorly executed. Next steps are to conceptualize desired changes to vector control methods or technologies used and then to operationally determine in pilot studies whether these changes are likely to improve control program performance. This should be followed by a shift in resource allocation to replace ineffective methods and inferior technology with more effective and operationally tested alternatives. The cyclical and self-improving nature of the continuous improvement model will produce locally appropriate management strategies that continually are adapted to counter changes in vector population or dengue virus transmission dynamics. We discuss promising proactive vector control approaches and the continued need for the vector and dengue control community to incorporate emerging technologies and to partner with academia, business and the community-at-large to identify new solutions that reduce dengue.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aedes / virology*
  • Animals
  • Dengue / prevention & control*
  • Dengue / transmission
  • Humans
  • Insect Vectors*
  • Mosquito Control / methods*