Fatty acid composition abnormalities in atopic disease: evidence explored and role in the disease process examined

Clin Exp Allergy. 2008 Sep;38(9):1432-50. doi: 10.1111/j.1365-2222.2008.03072.x. Epub 2008 Jul 28.

Abstract

Summary There is a hypothesis causally linking excess intake of n-6 polyunsaturated fatty acids (PUFAs) to atopic disease. Under most dietary conditions, the main precursor of eicosanoids is the n-6 PUFA arachidonic acid (AA). AA-derived eicosanoids play many roles in sensitization to allergens and in allergic inflammation. Long chain n-3 PUFAs inhibit AA incorporation into cell membranes and inhibit AA metabolism to eicosanoids. It is hypothesized that atopy is associated with a higher n-6 PUFA status and with a low n-3 PUFA status. However, measurements of fatty acid composition do not provide a clear picture that such fatty acid abnormalities exist in atopy with no really clear pattern of altered status of a particular fatty acid or a particular fatty acid family. There are few reports of elevated linoleic acid in atopy. Some studies report lower amounts of the n-6 PUFAs, including AA, and of long chain n-3 PUFAs in atopy, although observations on this are not consistent. Taken together these data clearly do not support the hypothesis that atopy is somehow associated with a high exposure to, and status of, n-6 PUFAs. Intervention studies with n-3 PUFAs in pregnant women, infants and children suggest some clinical benefits, although how long lasting these are remains to be determined. The observation that there may be low AA status in atopy suggests that fish oil intervention, which targets AA status and metabolism, may not be ideal and that a combination of fish oil with some longer chain n-6 PUFAs may be more efficacious.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Arachidonic Acid / biosynthesis
  • Child
  • Child, Preschool
  • Dietary Fats, Unsaturated / adverse effects*
  • Eicosanoids / biosynthesis
  • Eicosanoids / chemistry
  • Fatty Acids, Omega-3 / chemistry
  • Fatty Acids, Omega-3 / metabolism
  • Fatty Acids, Omega-6 / chemistry
  • Fatty Acids, Omega-6 / metabolism
  • Fatty Acids, Unsaturated / chemistry*
  • Fatty Acids, Unsaturated / metabolism
  • Female
  • Fetal Blood / chemistry
  • Humans
  • Hypersensitivity, Immediate / epidemiology
  • Hypersensitivity, Immediate / etiology
  • Hypersensitivity, Immediate / metabolism*
  • Infant
  • Infant, Newborn
  • Milk, Human / chemistry

Substances

  • Dietary Fats, Unsaturated
  • Eicosanoids
  • Fatty Acids, Omega-3
  • Fatty Acids, Omega-6
  • Fatty Acids, Unsaturated
  • Arachidonic Acid