New bioimpedance analysis system: improved phenotyping with whole-body analysis

Eur J Clin Nutr. 2004 Nov;58(11):1479-84. doi: 10.1038/sj.ejcn.1601993.

Abstract

Objective: Bioimpedance analysis (BIA) is a potential field and clinical method for evaluating skeletal muscle mass (SM) and %fat. A new BIA system has 8-(two on each hand and foot) rather than 4-contact electrodes allowing for rapid 'whole-body' and regional body composition evaluation.

Design: This study evaluated the 50 kHz BC-418 8-contact electrode and TBF-310 4-contact electrode foot-foot BIA systems (Tanita Corp., Tokyo, Japan).

Subjects: There were 40 subject evaluations in males (n=20) and females (n=20) ranging in age from 6 to 64 y. BIA was evaluated in each subject and compared to reference lean soft-tissue (LST) and %fat estimates in the appendages and remainder (trunk+head) provided by dual-energy X-ray absorptiometry (DXA). Appendicular LST (ALST) estimates from both BIA and DXA were used to derive total body SM mass.

Results: The highest correlation between total body LST by DXA and impedance index (Ht(2)/Z) by BC-418 was for the foot-hand segments (r=0.986; left side only) compared to the arm (r=0.970-0.979) and leg segments (r=0.942-0.957)(all P<0.001). The within- and between-day coefficient of variation for %fat and ALST evaluated in five subjects was <1% and approximately 1-3.7%, respectively. The correlations between 8-electrode predicted and DXA appendicular (arms, legs, total) and trunk+head LST were strong and highly significant (all r> or =0.95, P<0.001) and group means did not differ across methods. Skeletal muscle mass calculated (Kim equation) from total ALST by DXA (X+/-s.d.)(23.7+/-9.7 kg) was not significantly different and highly correlated with BC-418 estimates (25.2+/-9.6 kg; r=0.96, P<0.001). There was a good correlation between total body %fat by 8-electrode BIA vs DXA (r=0.87, P<0.001) that exceeded the corresponding association with 4-electrode BIA (r=0.82, P<0.001). Group mean segmental %fat estimates from BC-418 did not differ significantly from corresponding DXA estimates. No between-method bias was detected in the whole body, ALST, and skeletal muscle analyses.

Conclusions: The new 8-electrode BIA system offers an important new opportunity of evaluating SM in research and clinical settings. The additional electrodes of the new BIA system also improve the association with DXA %fat estimates over those provided by the conventional foot-foot BIA.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Absorptiometry, Photon / methods
  • Adipose Tissue
  • Adolescent
  • Adult
  • Body Composition / physiology*
  • Child
  • Electric Impedance*
  • Female
  • Humans
  • Male
  • Middle Aged
  • Phenotype
  • Predictive Value of Tests