Skip to main content

Advertisement

Log in

Evaluation by Exercise Testing of the Child with Cerebral Palsy

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Cerebral palsy (CP) is classified as a static encephalopathy. CP is a nonprogressive disorder affecting posture and movement and is commonly associated with a spectrum of developmental disabilities. Serial testing of physiological function can provide a quantitative assessment of improvement or decline in the condition of the patient. Furthermore, there are increasing numbers of children with disability who are involved in athletic activity, and the need for physiological feedback to the disabled athlete and coach is the same as for able-bodied individuals. It is acknowledged that children and adolescents with CP have a lower maximal oxygen consumption (V̇O2max) compared with their able-bodied peers. Children with CP also have distinctly subnormal values for peak anaerobic power and muscular endurance of the upper and lower limbs. Irrespective of the scaling method used (absolute or relative), when compared with normal data from healthy controls, children with CP scored between 2 and 4 standard deviations below the expected mean value for power. Gait abnormalities in children with CP have been shown to increase submaximal walking energy expenditure almost 3-fold compared with healthy children.

Assessment of the metabolic cost alone is important but does not provide any information on the mechanisms giving rise to the high energy cost of locomotion in children with CP. Hence, a multidisciplinary (kinetic, kinematic and electromyographic) approach is an important noninvasive tool for studying some of the underlying mechanisms responsible for abnormal gait and elevated energy costs.

A certain level of muscle co-contraction is necessary for achieving joint stability during locomotion, particularly at the ankle and knee. There appears, however, to be a co-contraction threshold beyond which there are associated elevated metabolic costs during locomotion in children with CP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stanley FJ, Watson L. Trends in perinatal mortality and cerebral palsy in Western Australia. BMJ 1992; 304: 1658–63

    Article  PubMed  CAS  Google Scholar 

  2. Pape KE, Kirsch SE, Bugaresti M. New therapies in spastic cerebral palsy. Contemp Paediatr 1990 May/Jun; 7–13

    Google Scholar 

  3. Bleck EE. Orthopaedic management in cerebral palsy clinics. Dev Med 1987; 99: 6–12

    Google Scholar 

  4. Lindon RA. The Pultibec system for the medical assessment of handicapped children. Dev Med Child Neurol 1963; 5: 125–45

    Article  PubMed  CAS  Google Scholar 

  5. Larroche JC. Fetal encephalopathies of circulatory origin. Biol Neonate 1986; 50: 61–4

    Article  PubMed  CAS  Google Scholar 

  6. Volpe JJ. Neurology of the newborn. 2nd edition. London: Saunders, 1987: 726

    Google Scholar 

  7. Rutherford MA, Pennock JM, Murdoch-Eaton JM, et al. Athetoid cerebral palsy with cysts in the putamen after hypoxicischaemia encephalopathy. Arch Dis Child 1992; 67: 846–50

    Article  PubMed  CAS  Google Scholar 

  8. Gluckman PD, Williams CE. When and where do brain cells die?. Dev Med Child Neurol 1992; 34: 1010–4

    Article  PubMed  CAS  Google Scholar 

  9. Raeburn W, Saner C, Barr M, et al. The stillborn fetus: placental histological examination in determining a cause. Obstet Gynecol 1985; 65: 637–40

    Google Scholar 

  10. Nelson KB, Ellenberg JH. Antecedents of cerebral palsy. New Engl J Med 1986; 315: 81–6

    Article  PubMed  CAS  Google Scholar 

  11. Foley J. Birth-weight ratio and cerebral palsy. Early Hum Dev 1995; 40: 145–56

    Article  PubMed  CAS  Google Scholar 

  12. Fletcher NA, Foley J. Parental age, genetic mutation and cerebral palsy. Med Genet 1993; 30: 444–6

    Article  Google Scholar 

  13. Parker DF, Carriere L, Hebestreit H, et al. Muscle performance and gross motor function of children with spastic cerebral palsy. Dev Med Child Neurol 1993; 35: 17–23

    Article  PubMed  CAS  Google Scholar 

  14. Berger W, Altenmueller E, Dietz V. Normal and impaired development of childrens gait. Hum Neurobiol 1984; 3: 163–70

    PubMed  CAS  Google Scholar 

  15. Myklebust B, Gottlieb GL, Agarwal GC. Stretch reflexes of the normal infant. Dev Med Child Neurol 1986; 28: 440–9

    Article  PubMed  CAS  Google Scholar 

  16. Dietz V, Berger W. Normal and impaired regulation of muscle stiffness in gait: a new hypothesis about muscle hypertonia. Exp Neurol 1983; 79: 680–7

    Article  PubMed  CAS  Google Scholar 

  17. Leonard CT, Hirschfeld H, Forssberg H. The development of independent walking in children with cerebral palsy. Dev Med Child Neurol 1991; 33: 567–77

    Article  PubMed  CAS  Google Scholar 

  18. Berger W, Horstmann G, Dietz V. Tension development and muscle activation in the leg during gait in spastic hemiparesis: incidence of muscle hypertonia and exaggerated stretch reflexes. J Neurol Neurosurg Psychiatry 1984; 47: 1029–33

    Article  PubMed  CAS  Google Scholar 

  19. Bar-Or O. Role of exercise in the assessment and management of neuromuscular disease in children. Med Sci Sports Exerc 1996; 28: 421–7

    Article  PubMed  CAS  Google Scholar 

  20. Sargeant A. Short-term muscle power in children and adolescents. In. Bar-Or O, editor. Advances in pediatric sports science. Champaign (IL): Human Kinetics Publishers, 1989: 42–65

    Google Scholar 

  21. McArdle WD, Katch FI, Katch VL. Exercise physiology: energy, nutrition and human performance. 4th edition. London: William and Wilkins 1996: 189–213

    Google Scholar 

  22. Duncan GE, Mahon AD, Howe CA, et al. Plateau in oxygen uptake at maximal exercise in male children. Pediatr Exerc Sci 1996; 8: 77–86

    Google Scholar 

  23. Lundberg A. Maximal aerobic capacity of young people with spastic cerebral palsy. Dev Med Child Neurol 1978; 20: 205–10

    Article  PubMed  CAS  Google Scholar 

  24. Rieckert H, Bruhn U, Schwalm U, et al. Endurance training within a program of physical education in children predominantly with cerebral palsy. Med Welt 1977; 28: 1694–701

    PubMed  CAS  Google Scholar 

  25. Fernhall B, Millar AL, Tymeson GT, et al. Maximal exercise testing of mentally retarded adolescents and adults: reliability study. Arch Phys Med Rehabil 1990; 71: 1065–8

    PubMed  CAS  Google Scholar 

  26. Dresen MHW, de Groot G, Mesa Menor JR, et al. Aerobic energy expenditure of handicapped children after training. Arch Phys Med Rehabil 1985; 66: 302–6

    PubMed  CAS  Google Scholar 

  27. Dahlback GO, Norlin R. The effect of corrective surgery on energy expenditure during ambulation in children with cerebral palsy. Eur J Appl Physiol 1985; 54: 67–70

    Article  CAS  Google Scholar 

  28. Bar-Or O, Inbar O, Spira R. Physiological effects of a sports rehabilitation program on cerebral palsied and post-poliomyelitic adolescents. Med Sci Sports 1976; 8: 157–61

    Article  PubMed  CAS  Google Scholar 

  29. Hoofwijk M, Unnithan V, Bar-Or O. Maximal treadmill performance of children with cerebral palsy. Pediatr Exerc Sci 1995; 7: 305–13

    Google Scholar 

  30. Lundberg A. A longitudinal study of physical working capacity of young people with spastic cerebral palsy. Dev Med Child Neurol 1984; 26: 328–34

    Article  PubMed  CAS  Google Scholar 

  31. Lundberg A. Oxygen consumption in relation to work load in students with spastic cerebral palsy. J Appl Physiol 1976; 40: 873–5

    PubMed  CAS  Google Scholar 

  32. Unnithan VB, Dowling JJ, Frost G, et al. Role of co-contraction in the oxygen cost of walking in children with cerebral palsy. Med Sci Sports Exerc 1996; 28: 1498–504

    Article  PubMed  CAS  Google Scholar 

  33. van den Berg-Emons RJG, van Baak MA, de Barbanson DC, et al. Reliability of tests to determine peak aerobic power, anaerobic power and isokinetic muscle strength in children with spastic CP. Dev Med Child Neurol 1996; 38: 1117–25

    Article  PubMed  Google Scholar 

  34. McArdle WD, Katch FI, Katch VL, et al. Exercise physiology: energy, nutrition and human performance. 4th ed. London: Williams and Wilkins 1996; 121–39

    Google Scholar 

  35. Bar-Or O, Dotan R, Inbar O, et al. Anaerobic capacity and muscle fibre type distribution in man. Int J Sports Med 1980; 1: 89–92

    Google Scholar 

  36. Parker DF, Carriere L, Hebestreit H, et al. Anaerobic endurance and peak muscle power in children with spastic cerebral palsy. Am J Dis Child 1992; 146: 1069–73

    PubMed  CAS  Google Scholar 

  37. Bar-Or O. Pathophysiologic factors which limit the exercise capacity of the sick child. Med Sci Sports Exerc 1986; 18: 276–82

    Article  PubMed  CAS  Google Scholar 

  38. Emons HJG, Groenenboom DC, Burggraaff YI, et al. Wingate Anaerobic Test in children with cerebral palsy. In. Coudert J, Van Praagh E, editors. Children and exercise XVI. Paris: Masson, 1992: 187–9

    Google Scholar 

  39. Van Mil GAH, Schoeber N, Calvert RE, et al. Optimization of braking force in the Wingate test for children and adolescents with a neuromuscular disease. Med Sci Sports Exerc 1996; 28: 1087–92

    Article  PubMed  Google Scholar 

  40. Brooke MH, Engel WK. The histographic analysis of human muscle biopsies with regard to fibre types. Neurology 1969; 19: 591–605

    Article  PubMed  CAS  Google Scholar 

  41. Dotan R, Bar-Or O. Load optimisation for the Wingate Anaerobic Test. Eur J Appl Physiol 1983; 51: 409–17

    Article  CAS  Google Scholar 

  42. Tirosh E, Rosenbaum P, Bar-Or O. A new muscle power test in neuromuscular disease: feasability and reliability. Am J Dis Child 1990; 144: 1083–7

    PubMed  CAS  Google Scholar 

  43. Bar-Or O. The Wingate Anaerobic Test: an update on methodology, reliability and validity. Sports Med 1987; 4: 381–94

    Article  PubMed  CAS  Google Scholar 

  44. Campbell JJ. Ball Energetics of walking in cerebral palsy. Orthop Clin North Am 1978; 9: 374–7

    PubMed  CAS  Google Scholar 

  45. Berg K. Effect of physical training of school children with cerebral palsy. Acta Paediatr Scand Suppl 1970; 204: 27–33

    Article  PubMed  Google Scholar 

  46. Rose J, Gamble JG, Medeiros J, et al. Energy cost of walking in normal children and in those with cerebral palsy: comparison of heart rate and oxygen uptake. J Pediatr Orthop 1989; 204: 276–9

    Google Scholar 

  47. Rose J, Gamble JG, Burgos A, et al. Energy expenditure index of walking for normal children and for children with cerebral palsy. Dev Med Child Neurol 1990; 32: 333–40

    Article  PubMed  CAS  Google Scholar 

  48. Rose J, Haskell WL, Gamble JG. A comparison of oxygen pulse and respiratory exchange ratio in cerebral palsied and nondisabled children. Arch Phys Med Rehabil 1993; 74: 702–5

    Article  PubMed  CAS  Google Scholar 

  49. McLenaghan B, Hill S, Okazaki C. Interface design for indirect calorimetry in children with cerebral palsy. Arch Phys Med Rehabil 1988; 69: 548–51

    Google Scholar 

  50. Corry IS, Duffy CM, Cosgrave AP, et al. Measurement of oxygen consumption in disabled children by the cosmed K2 portable telemetry system. Dev Med Child Neurol 1996; 38: 585–93

    Article  PubMed  CAS  Google Scholar 

  51. Mann R. Biomechanics in cerebral palsy. Foot Ankle 1983; 4: 114–9

    PubMed  CAS  Google Scholar 

  52. Perry J, Hoffer MM, Giovan P, et al. Gait analysis of the triceps surae in cerebral palsy. J Bone Joint Surg Am 1974; 56: 511–20

    PubMed  CAS  Google Scholar 

  53. Winter DA. The biomechanics and motor control of human movement. New York (NY): John Wiley & Sons, Inc., 1990

    Google Scholar 

  54. Olney SJ, MacPhail A, Hedden DM, et al. Work and power in hemiplegic cerebral palsy gait. Phys Ther 1990; 70: 431–8

    PubMed  CAS  Google Scholar 

  55. Lee EH, Goh JCH, Bose K. Value of gait analysis in the assessment of surgery in cerebral palsy. Phys Med Rehabil 1992; 73: 642–6

    CAS  Google Scholar 

  56. Lai KA, Kuo KN, Andriacchi TP. Relationship between dynamic deformities and joint moments in children with cerebral palsy. J Pediatr Orthop 1988; 8: 690–5

    Article  PubMed  CAS  Google Scholar 

  57. Bowsher KA, Damiano DL, Vaughan CL. Joint torques and co-contraction during gait for normal and cerebral palsy children. Proceedings of the Second North American Congress on Biomechanics (NACOB II); 1992: 319–20

    Google Scholar 

  58. Olney SJ, Costigan PA, Hedden DM. Mechanical energy patterns in gait in cerebral palsied children with hemiplegia. Phys Ther 1987; 67: 1348–54

    PubMed  CAS  Google Scholar 

  59. Unnithan VB, Dowling JJ, Frost G, et al. Co-contraction and phasic activity during gait in children with cerebral palsy. Electromyogr Clin Neurophysiol 1996; 36: 487–94

    PubMed  CAS  Google Scholar 

  60. Rose J, Haskell WL, Gamble JG, et al. Muscle pathology and clinical measures of disability in children with cerebral palsy. J Orthop Res 1994; 12: 758–68

    Article  PubMed  CAS  Google Scholar 

  61. Tardieu C, Huet de la Tour E, Bret MD, et al. Muscle hypoextensibility in children with cerebral palsy: clinical and experimental observations. Arch Phys Med Rehabil 1982; 63: 97–102

    PubMed  CAS  Google Scholar 

  62. Castle ME, Reyman TA, Schneider M. Pathology of spastic muscle in cerebral palsy. Clin Orthop 1979; 142: 223–33

    PubMed  Google Scholar 

  63. Romanini L, Villani C, Meloni C, et al. Histological and morphological aspects of muscle in infantile cerebral palsy. Roma II Clinica Orthopaedica, Universiti Degli Studi La Sapienza, 1989

    Google Scholar 

  64. Baltzopoulos V. Muscular and tibiofemoral joint forces during isokinetic knee extension. Clin Biomech 1995; 10: 208–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viswanath B. Unnithan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unnithan, V.B., Clifford, C. & Bar-Or, O. Evaluation by Exercise Testing of the Child with Cerebral Palsy. Sports Med 26, 239–251 (1998). https://doi.org/10.2165/00007256-199826040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199826040-00003

Keywords

Navigation