Skip to main content
Log in

Thiazolidinediones in Type 2 Diabetes Mellitus

Current Clinical Evidence

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus is characterised by insulin resistance as well as progressive pancreatic β cell dysfunction. The cornerstone of current oral blood-glucose lowering therapy consists of metformin, which primarily lowers hepatic glucose production, and the sulphonylureas that act by stimulating pancreatic β-cells to secrete insulin. Recently, a novel class of agents, the thiazolidinediones, has been introduced that favourably influence insulin sensitivity and possibly also pancreatic β-cell function. The thiazolidinediones are synthetic ligands that bind to the nuclear peroxisome proliferator-activated receptor-γ and exert their action by activating transcription of genes that, among others, regulate adipocyte differentiation and adipogenesis as well as glucose and lipid metabolism. To date, the precise mechanisms underlying the actions of thiazolidinediones are largely unknown. When given as monotherapy or in combination with sulphonylureas, metformin or insulin in patients with type 2 diabetes, the currently available thiazolidinediones (rosiglitazone and pioglitazone) ameliorate glycaemic control, by lowering fasting and postprandial blood glucose levels, and improve insulin sensitivity in placebo-controlled trials. They seem to have differential effects on dyslipidaemia in patients with type 2 diabetes; rosiglitazone increases total cholesterol as well as high-density lipoprotein (HDL) and low-density lipoprotein cholesterol levels and affects plasma triglyceride levels depending on the baseline values, whereas pioglitazone lowers triglycerides and increases HDL cholesterol levels. The adverse events of both agents that occur with greater frequency than in patients treated with placebo are fluid retention and oedema.

As demonstrated, mainly in preclinical studies to date, rosiglitazone and pioglitazone possess beneficial effects on other cardiovascular risk factors associated with the insulin resistance syndrome. Thus, these agents were shown to decrease blood pressure, enhance myocardial function and fibrinolysis, as well as possess anti-inflammatory and other beneficial vascular effects. Long-term efficacy and surveillance of this promising class of drugs in patients, however, still need to be demonstrated in outcome trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Burke JP, Williams K, Gaskill SP, et al. Rapid rise in the incidence of type 2 diabetes from 1987 to 1996. Arch Intern Med 1999; 159(13): 1450–6

    Article  PubMed  CAS  Google Scholar 

  2. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 1998; 21(9): 1414–31

    Article  PubMed  CAS  Google Scholar 

  3. DeFronzo RA. Pathogenesis of type 2 (non-insulin-dependent) diabetes mellitus: a balanced overview. Diabetologia 1992; 35(4): 389–97

    Article  PubMed  CAS  Google Scholar 

  4. Yki-Jarvinen H. Pathogenesis of non-insulin-dependent diabetes mellitus. Lancet 1994; 343(8889): 91–5

    Article  PubMed  CAS  Google Scholar 

  5. Ferrannini E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocr Rev 1998; 19(4): 477–90

    Article  PubMed  CAS  Google Scholar 

  6. Reaven GM. Banting lecture 1988: role of insulin resistance in human disease. Diabetes 1988; 37(12): 1595–607

    Article  PubMed  CAS  Google Scholar 

  7. Eriksson J, Franssila-Kallunki A, Ekstrand A, et al. Early metabolic defects in persons at increased risk for non-insulin dependent diabetes mellitus. N Engl J Med 1989; 321: 337–41

    Article  PubMed  CAS  Google Scholar 

  8. Matthaei S, Stumvoll M, Kellerer M, et al. Pathophysiology and pharmacological treatment of insulin resistance. Endocr Rev 2000; 21(6): 585–618

    Article  PubMed  CAS  Google Scholar 

  9. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000; 21(6): 697–738

    Article  PubMed  CAS  Google Scholar 

  10. King DS, Dalsky GP, Staten MA, et al. Insulin action and secretion in endurance-trained and untrained humans. J Appl Physiol 1987; 63: 2247–52

    PubMed  CAS  Google Scholar 

  11. Kelley DE. Effects of weight loss on glucose homeostasis in NIDDM. Diabetes Rev 1995; 3: 366–77

    Google Scholar 

  12. Schneider SH, Morgado A. Effects of fitness and physical training on carbohydrate metabolism and associated cardiovascular risk factors in patients with diabetes. Diabetes Rev 1995; 3: 378–407

    Google Scholar 

  13. Bailey CJ, Turner RC. Metformin. N Engl J Med 1996; 334(9): 574–9

    Article  PubMed  CAS  Google Scholar 

  14. Cusi K, DeFronzo RA. Metformin: a review of its metabolic effects. Diabetes Rev 1998; 6: 89–131

    Google Scholar 

  15. Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 1996; 45(12): 1661–9

    Article  PubMed  CAS  Google Scholar 

  16. Kumar S, Boulton AJ, Beck-Nielsen H, et al. Troglitazone, an insulin action enhancer, improves metabolic control in NIDDM patients. Diabetologia 1996; 39(6): 701–9

    Article  PubMed  CAS  Google Scholar 

  17. Day C. Thiazolidinediones: a new class of antidiabetic drugs. Diabet Med 1999; 16(3): 179–92

    Article  PubMed  CAS  Google Scholar 

  18. Maggs DG, Buchanan TA, Burant CF, et al. Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitus: a randomized, double-blind placebo-controlled trial. Ann Intern Med 1998; 128(3): 176–85

    PubMed  CAS  Google Scholar 

  19. Schwartz S, Raskin P, Fonseca V, et al. Effect of troglitazone in insulin-treated patients with type II diabetes mellitus. N Engl J Med 1998; 338(13): 861–6

    Article  PubMed  CAS  Google Scholar 

  20. Fonseca V, Valiquett TR, Huang SM, et al. Troglitazone monotherapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, controlled study. J Clin Endocrinol Metab 1998; 83(9): 3169–76

    Article  PubMed  CAS  Google Scholar 

  21. Buse JB, Gumbiner B, Mathias BP, et al. Troglitazone use in insulin-treated type 2 diabetic patients. Diabetes Care 1998; 21(9): 1455–61

    Article  PubMed  CAS  Google Scholar 

  22. Horton ES, Whitehouse F, Ghazzi MN, et al. Troglitazone in combination with sulfonylurea restores glycemic control in patients with type 2 diabetes. Diabetes Care 1998; 21(9): 1462–9

    Article  PubMed  CAS  Google Scholar 

  23. Yale J-F, Valiquett TR, Ghazzi MN, et al. The effect of thiazolidinedione drug, troglitazone, on glycemia in patients with type 2 diabetes mellitus poorly controlled with sulfonylurea and metformin. Ann Intern Med 2001; 134(9): 737–45

    PubMed  CAS  Google Scholar 

  24. Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature 2000; 405(6785): 421–4

    Article  PubMed  CAS  Google Scholar 

  25. Olefsky JM. Treatment of insulin resistance with peroxisome proliferator-activated receptor γ agonists. J Clin Invest 2000; 106(4): 467–72

    Article  PubMed  CAS  Google Scholar 

  26. Schoonjans K, Auwerx J. Thiazolidinediones: an update. Lancet 2000; 355(9208): 1008–10

    Article  PubMed  CAS  Google Scholar 

  27. Auwerx J. PPARy, the ultimate thrifty gene. Diabetologia 1999; 42(9): 1033–49

    Article  PubMed  CAS  Google Scholar 

  28. Debril MB, Renaud JP, Fajas L, et al. The pleiotropic functions of peroxisome proliferator-activated receptor γ. J Mol Med 2001; 79(1): 30–47

    Article  PubMed  CAS  Google Scholar 

  29. Shimabukuro M, Zhou YT, Lee Y, et al. Troglitazone lowers islet fat and restores beta cell function of Zucker diabetic fatty rats. J Biol Chem 1998; 273(6): 3547–50

    Article  PubMed  CAS  Google Scholar 

  30. Higa M, Zhou YT, Ravazzola M, et al. Troglitazone prevents mitochondrial alterations, β cell destruction, and diabetes in obese prediabetic rats. Proc Natl Acad Sci U S A 1999 Sep; 96(20): 11513–8

    Article  PubMed  CAS  Google Scholar 

  31. Kohlroser J, Mathai J, Reichheld J, et al. Hepatotoxicity due to troglitazone: report of two cases and review of adverse events reported to the United States Food and Drug Administration. Am J Gastroenterol 2000; 95(1): 272–6

    Article  PubMed  CAS  Google Scholar 

  32. Scheen AJ. Thiazolidinediones and liver toxicity. Diabetes Metab 2001; 27(3): 305–13

    PubMed  CAS  Google Scholar 

  33. Barman Balfour JA, Plosker GL. Rosiglitazone. Drugs 1999; 57(6): 921–30

    Article  Google Scholar 

  34. Gillies PS, Dunn CJ. Pioglitazone. Drugs 2000; 60(2): 333–43

    Article  PubMed  CAS  Google Scholar 

  35. Forman LM, Simmons DA, Diamond RH. Hepatic failure in a patient taking rosiglitazone. Ann Intern Med 2000; 132(2): 118–21

    PubMed  CAS  Google Scholar 

  36. Al-Salman J, Arjomand H, Kemp DG, et al. Hepatocellular injury in a patient receiving rosiglitazone. Ann Intern Med 2000; 132(2): 121–4

    PubMed  CAS  Google Scholar 

  37. Gouda HE, Khan A, Schwartz J, et al. Liver failure in a patient treated with long-term rosiglitazone therapy. Am J Med 2001; 111(7): 584–5

    Article  PubMed  CAS  Google Scholar 

  38. Maeda K. Hepatocellular injury in a patient receiving pioglitazone [letter]. Ann Intern Med 2001; 135: 306

    PubMed  CAS  Google Scholar 

  39. May LD, Lefkowitch JH, Kram MT, et al. Mixed hepatocellular-cholestatic liver injury after pioglitazone therapy. Ann Intern Med 2002; 136(6): 449–52

    PubMed  Google Scholar 

  40. Nagasaka S, Abe T, Kawakami A, et al. Pioglitazone-induced hepatic injury in a patient previously receiving troglitazone with success. Diabet Med 2002; 19(4): 347–8

    Article  PubMed  CAS  Google Scholar 

  41. Lebovitz HE, Kreider M, Freed MI. Evaluation of liver function in type 2 diabetic patients during clinical trials: evidence that rosiglitazone does not cause hepatic dysfunction. Diabetes Care 2002; 25(5): 815–21

    Article  PubMed  CAS  Google Scholar 

  42. Chilcott J, Tappenden P, Jones ML, et al. A systematic review of the clinical effectiveness of pioglitazone in the treatment of type 2 diabetes mellitus. Clin Ther 2001; 23(11): 1792–823

    Article  PubMed  CAS  Google Scholar 

  43. Calles-Escandon J, Robbins DC. Loss of early phase of insulin release in humans impairs glucose tolerance and blunts thermic effect of glucose. Diabetes 1987; 36(10): 1167–72

    Article  PubMed  CAS  Google Scholar 

  44. Weyer C, Bogardus C, Mott DM, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1999; 104(6): 787–94

    Article  PubMed  CAS  Google Scholar 

  45. Le Roith D, Zick Y. Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care 2001; 24(3): 588–97

    Article  PubMed  Google Scholar 

  46. Avignon A, Radauceanu A, Monnier L. Nonfasting glucose is a better marker of diabetic control than fasting plasma glucose in type 2 diabetes. Diabetes Care 1997; 20(12): 1822–6

    Article  PubMed  CAS  Google Scholar 

  47. Mitrakou A, Kelley D, Mokan M, et al. Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med 1992; 326(1): 22–9

    Article  PubMed  CAS  Google Scholar 

  48. De Vegt F, Dekker JM, Ruhe HG, et al. Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn Study. Diabetologia 1999; 42(8): 926–31

    Article  PubMed  Google Scholar 

  49. Tominaga M, Eguchi H, Manaka H, et al. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose: The Funagata Diabetes Study. Diabetes Care 1999; 22(6): 920–4

    Article  PubMed  CAS  Google Scholar 

  50. Haffner SM. The importance of hyperglycemia in the nonfasting state to the development of cardiovascular disease. Endocr Rev 1998; 19(5): 583–92

    Article  PubMed  CAS  Google Scholar 

  51. Heine RJ, Dekker JM. Beyond postprandial hyperglycaemia: metabolic factors associated with cardiovascular disease. Diabetologia 2002; 45(4): 461–75

    Article  PubMed  CAS  Google Scholar 

  52. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999; 131(4): 281–303

    PubMed  CAS  Google Scholar 

  53. Asplund K, Wiholm BE, Lithner F. Glibenclamide-associated hypoglycaemia: a report on 57 cases. Diabetologia 1983; 24(6): 412–7

    Article  PubMed  CAS  Google Scholar 

  54. Burge MR, Sood V, Sobhy TA, et al. Sulphonylurea-induced hypoglycaemia in type 2 diabetes mellitus: a review. Diabetes Obes Metab 1999; 1(4): 199–206

    Article  PubMed  CAS  Google Scholar 

  55. Prigeon RL, Kahn SE, Porte Jr D. Effect of troglitazone on B cell function, insulin sensitivity, and glycemic control in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 1998; 83(3): 819–23

    Article  PubMed  CAS  Google Scholar 

  56. Matthews DR, Bakst A, Weston WM, et al. Rosiglitazone decreases insulin resistance and improves beta-cell function in patients with type 2 diabetes [abstract]. Diabetologia 1999; 42 Suppl. 1: A228

    Article  Google Scholar 

  57. Buckingham RE, Al-Barazanji KA, Toseland CD, et al. Peroxisome proliferator-activated receptor-γ agonist, rosiglitazone, protects against nephropathy and pancreatic islet abnormalities in Zucker fatty rats. Diabetes 1998; 47(8): 1326–34

    Article  PubMed  CAS  Google Scholar 

  58. Delerive P, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol 2001; 169(3): 453–9

    Article  PubMed  CAS  Google Scholar 

  59. Marx N, Schönbeck U, Lazar MA, et al. PPARγ activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 1998; 83(11): 1097–103

    Article  PubMed  CAS  Google Scholar 

  60. Murphy GJ, Holder JC. PPAR-γ agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci 2000; 21(12): 469–74

    Article  PubMed  CAS  Google Scholar 

  61. Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999; 20(5): 649–88

    Article  PubMed  CAS  Google Scholar 

  62. Okuno A, Tamemoto H, Tobe K, et al. Troglitazone increases the number of small adipocytes without change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101(6): 1354–61

    Article  PubMed  CAS  Google Scholar 

  63. Wu Z, Xie Y, Morrison RF, et al. PPARγ induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPα during the conversion of 3T3 fibroblasts into adipocytes. J Clin Invest 1998; 101(1): 22–32

    Article  PubMed  CAS  Google Scholar 

  64. Montague CT, O'Rahilly S. The perils of portliness: causes and consequences of visceral adiposity. Diabetes 2000; 49(6): 883–8

    Article  PubMed  CAS  Google Scholar 

  65. Oakes ND, Camilleri S, Furier SM, et al. The insulin sensitizer BRL 49653 reduces systemic fatty acid supply and utilization and tissue availability in the rat. Metabolism 1997; 46: 935–42

    Article  PubMed  CAS  Google Scholar 

  66. Buckingham RE, Birmingham J, O'Brien P, et al. Rapid reversal of hepatic steatosis by rosiglitazone [abstract]. Diabetes 2001; 50 Suppl. 2: A371

    Google Scholar 

  67. Kuhlmann J, Neumann-Haefelin C, Belz U, et al. Intramyocellular lipid and insulin resistance: a longitudinal in vivo 1H-spectroscopic study in Zucker Diabetic Fatty rats. Diabetes 2003; 52(1): 138–44

    Article  PubMed  CAS  Google Scholar 

  68. Zhou YT, Grayburn P, Karim A, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A 2000; 97(4): 1784–9

    Article  PubMed  CAS  Google Scholar 

  69. Shimabukuro M, Zhou YT, Levi M, et al. Fatty acid-induced β cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci U S A 1998; 95(3): 2498–502

    Article  PubMed  CAS  Google Scholar 

  70. Unger RH, Orci L. Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J 2001; 15(2): 312–21

    Article  PubMed  CAS  Google Scholar 

  71. Hofmann C, Lorenz K, Braithwaite SS, et al. Altered gene expression for TNFα and its receptor during drug and dietary modulation of insulin resistance. Endocrinology 1994; 134(1): 264–70

    Article  PubMed  CAS  Google Scholar 

  72. Maeda N, Takahashi M, Funahashi T, et al. PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001; 50(9): 2094–9

    Article  PubMed  CAS  Google Scholar 

  73. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose tissue expression of TNFα: direct role in obesity-linked insulin resistance. Science 1993; 259(5091): 87–91

    Article  PubMed  CAS  Google Scholar 

  74. Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNFα- and obesity-induced insulin resistance. Science 1996; 271(5249): 665–8

    Article  PubMed  CAS  Google Scholar 

  75. Zinman B, Hanley AJ, Harris SB, et al. Circulating TNFα concentrations in a native Canadian population with high rates of type 2 diabetes mellitus. J Clin Endocrinol Metab 1999; 84(1): 272–8

    Article  PubMed  CAS  Google Scholar 

  76. Katsuki A, Sumida Y, Murashima S, et al. Serum levels of TNFα are increased in obese patients with NIDDM. J Clin Endocrinol Metab 1998; 83(3): 859–62

    Article  PubMed  CAS  Google Scholar 

  77. Peraldi P, Xu M, Spiegelman BM. Thiazolidinediones block TNFα-induced inhibition of insulin signaling. J Clin Invest 1997; 100(7): 1863–9

    Article  PubMed  CAS  Google Scholar 

  78. Souza SC, Yamamoto MT, Franciosa MD, et al. BRL 49653 blocks lipolytic actions of TNFα: a potential new insulin-sensitizing mechanism for thiazolidinediones. Diabetes 1998; 47(4): 691–5

    Article  PubMed  CAS  Google Scholar 

  79. Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature 2001; 409(6818): 307–12

    Article  PubMed  CAS  Google Scholar 

  80. Savage DB, Sewter CP, Klenk ES, et al. Resistin/Fizz3 expression in relation to obesity and PPAR-γ action in humans. Diabetes 2001; 50(10): 2199–202

    Article  PubMed  CAS  Google Scholar 

  81. McTernan CL, McTernan PG, Harte AL, et al. Resistin, central obesity, and type 2 diabetes. Lancet 2002; 359(9300): 46–7

    Article  PubMed  CAS  Google Scholar 

  82. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999; 257(1): 79–83

    Article  PubMed  CAS  Google Scholar 

  83. Hotta K, Hunahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20(6): 1595–9

    Article  PubMed  CAS  Google Scholar 

  84. Auwerx J, Staels B. Leptin. Lancet 1998; 351(9104): 737–42

    Article  PubMed  CAS  Google Scholar 

  85. De Vos P, Lefebvre AM, Miller SG, et al. Thiazolidinediones repress ob gene expression in rodents via activation of PPARγ. J Clin Invest 1996; 98(4): 1004–9

    Article  PubMed  Google Scholar 

  86. Kallen CB, Lazar MA. Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes. Proc Natl Acad Sci U S A 1996; 93(12): 5793–6

    Article  PubMed  CAS  Google Scholar 

  87. Moller DE, Flier JS. Insulin resistance: mechanisms, syndromes, and implications. N Engl J Med 1991; 325(13): 938–48

    Article  PubMed  CAS  Google Scholar 

  88. Moitra J, Mason MM, Olive M, et al. Life without white fat: a transgenic mouse. Genes Dev 1998; 12(20): 3168–81

    Article  PubMed  CAS  Google Scholar 

  89. Burant CF, Sreenan S, Hirano K, et al. Troglitazone action is independent of adipose tissue. J Clin Invest 1997; 100(11): 2900–8

    Article  PubMed  CAS  Google Scholar 

  90. Chao L, Marcus-Samuels B, Mason MM, et al. Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J Clin Invest 2000; 106(10): 1221–8

    Article  PubMed  CAS  Google Scholar 

  91. Arioglu E, Duncan-Morin J, Sebring N, et al. Efficacy and safety of troglitazone in treatment of lipodystrophy syndromes. Ann Intern Med 2000; 133(4): 263–74

    PubMed  CAS  Google Scholar 

  92. Oral EA, Simha V, Ruiz E, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med 2002; 346(8): 570–8

    Article  PubMed  CAS  Google Scholar 

  93. Vidal-Puig AJ, Considine RV, Jimenez-Linan M, et al. PPAR gene expression in human tissues: effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 1997; 99(10): 2416–22

    Article  PubMed  CAS  Google Scholar 

  94. Ciaraldi TP, Gilmore A, Olefsky JM, et al. In vitro studies on the action of CS-045: a new anti-diabetic agent. Metabolism 1990; 39(10): 1056–62

    Article  PubMed  CAS  Google Scholar 

  95. Park KS, Ciaraldi TP, Lindgren K, et al. Troglitazone effects on gene expression in human skeletal muscle of type II diabetes involve up-regulation of PPARγ. J Clin Endocrinol Metab 1998; 83(8): 2830–5

    Article  PubMed  CAS  Google Scholar 

  96. Caldwell SH, Hespenheide EE, Redick JA, et al. A pilot study of a thiazolidinedione, troglitazone, in nonalcoholic steatohepatitis. Am J Gastroenterol 2001; 96(2): 519–25

    Article  PubMed  CAS  Google Scholar 

  97. Mayerson AB, Hundal RS, Dufour S, et al. The effect of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 2002; 51(3): 797–802

    Article  PubMed  CAS  Google Scholar 

  98. Buckingham RE, Al-Barazanji KA, Toseland CDT, et al. PPAR-γ agonist, rosiglitazone, protects against and pancreatic islets abnormalities in Zucker fatty rats. Diabetes 1998; 47(8): 1326–34

    Article  PubMed  CAS  Google Scholar 

  99. Barroso I, Gurnell M, Crowley VE, et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999; 402(6764): 880–3

    PubMed  CAS  Google Scholar 

  100. Deeb SS, Fajas L, Nemoto M, et al. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998; 20(3): 284–7

    Article  PubMed  CAS  Google Scholar 

  101. Mori Y, Kim-Motoyama H, Katakura T, et al. Effect of the Pro12Ala variant of the human PPARγ2 gene on adiposity, fat distribution, and insulin sensitivity in Japanese men. Biochem Biophys Res Commun 1998; 251(1): 195–8

    Article  PubMed  CAS  Google Scholar 

  102. Beamer BA, Yen CJ, Andersen RE, et al. Association of the Pro12Ala variant in PPAR-γ2 gene with obesity in two Caucasian populations. Diabetes 1998; 47(11): 1806–8

    Article  PubMed  CAS  Google Scholar 

  103. Neve BP, Fuchart JC, Staels B. Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis. Biochem Pharmacol 2000; 60(8): 1245–50

    Article  PubMed  CAS  Google Scholar 

  104. Hsueh WA, Jackson S, Law RE. Control of vascular cell proliferation and migration by PPAR-γ a new approach to the macrovascular complications of diabetes. Diabetes Care 2001; 24(2): 392–7

    Article  PubMed  CAS  Google Scholar 

  105. Sidhu JS, Kaski JC. PPARγ: a potential therapeutic target in the management of ischaemic heart disease. Heart 2000; 86(3): 255–8

    Google Scholar 

  106. Tsuji T, Mizushige K, Noma T, et al. Pioglitazone improves left ventricular diastolic function and decreases collagen accumulation in prediabetic stage of a type II diabetic rat. J Cardiovasc Pharmacol 2001; 38(6): 868–74

    Article  PubMed  CAS  Google Scholar 

  107. Reaven P, Chen Q, Domb A, et al. Effect of diabetes and rosiglitazone on myocardial blood flow [abstract]. Diabetologia 2001; 44 Suppl. 1: A57

    Google Scholar 

  108. Asakawa M, Takano H, Nagai T, et al. Peroxisome proliferator-activated receptor γ plays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo. Circulation 2002; 105(10): 1240–6

    Article  PubMed  CAS  Google Scholar 

  109. Yoshioka S, Nishino H, Shiraki T, et al. Antihypertensive effect of CS-045 treatment in obese Zucker rats. Metabolism 1993; 42(1): 75–80

    Article  PubMed  CAS  Google Scholar 

  110. Ogihara T, Rakugi H, Ikegami H, et al. Enhancement of insulin sensitivity by troglitazone lowers blood pressure in diabetic hypertensives. Am J Hypertens 1995; 8(3): 316–20

    Article  PubMed  CAS  Google Scholar 

  111. Fukunaga Y, Itoh H, Doi K, et al. Thiazolidinediones, PPARγ agonists, regulate endothelial cell growth and secretion of vasoactive peptides. Atherosclerosis 2001; 158(1): 113–9

    Article  PubMed  CAS  Google Scholar 

  112. Buchanan TA, Meehan WP, Jeng YY, et al. Blood pressure lowering by pioglitazone: evidence for a direct vascular effect. J Clin Invest 1995; 96(1): 354–60

    Article  PubMed  CAS  Google Scholar 

  113. Ricote M, Huang JT, Welch JS, et al. The PPARγ as a regulator of monocyte/macrophage function. J Leukoc Biol 1999; 66(5): 733–9

    PubMed  CAS  Google Scholar 

  114. Yue TL, Chen J, Bao W, et al. In vivo myocardial protection from ischemia/reperfusion injury by the PPAR-γ agonist rosiglitazone. Circulation 2001; 104(21): 2588–94

    Article  CAS  Google Scholar 

  115. Chinetti G, Lestavel S, Bocher V, et al. PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001; 7(1): 53–8

    Article  PubMed  CAS  Google Scholar 

  116. Koshiyama H, Shimono D, Kuwamura N, et al. Inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001; 86(7): 3452–6

    Article  PubMed  CAS  Google Scholar 

  117. Nakamura T, Ushiyama C, Shimada N, et al. Comparative effects of pioglitazone, glibenclamide, and voglibose on urinary endothelin-1 and albumin excretion in diabetes patients. J Diabetes Complications 2000; 14(5): 250–4

    Article  PubMed  CAS  Google Scholar 

  118. King AB. A comparison in a clinical setting of the efficacy and the side effects of the three thiazolidinediones [letter]. Diabetes Care 2000; 23(4): 557

    Article  PubMed  CAS  Google Scholar 

  119. King AB, Armstrong D. Comparison of the glucose and lipid effects of rosiglitazone and pioglitazone following conversion from troglitazone treatment [abstract]. Diabetes 2001; 50 Suppl. 1: A120

    Google Scholar 

  120. Gegick CG, Altheimer MD. Comparison of effects of thiazolidinediones on cardiovascular risk factors: observations from a clinical practice. Endocr Pract 2001; 7(3): 162–9

    PubMed  CAS  Google Scholar 

  121. Khan MA, St Peter JV, Xue JL. A prospective, randomized comparison of the metabolic effects of pioglitazone or rosiglitazone in patients with type 2 diabetes who were previously treated with troglitazone. Diabetes Care 2002; 25(4): 708–11

    Article  PubMed  CAS  Google Scholar 

  122. SmithKline Beecham Pharmaceuticals. Avanida (rosiglitazone maleate) tablets. Prescribing Information. Collegeville (PA): SmithKline Beecham Pharmaceuticals, 2001 Feb [online]. Available from URL: http://www.fda.gov/medwatch/SAFETY/2002/Avandia_hilite.PDF [Accessed 2002 Jul 17]

  123. Takeda Pharmaceuticals America, Inc. Actos (pioglitazone hydrochloride) tablets. Prescribing information. Lincolnshire (IL): Takeda Pharmaceuticals America Inc, 2002 Jan [online]. Available from URL: http://www.fda.gov/medwatch/SAFETY/2002/actos_label_hilite.PDF [Accessed 2002 Jul 17]

  124. Gale EA. Lessons from the glitazones: a story of drug development. Lancet 2001; 357(9271): 1870–4

    Article  PubMed  CAS  Google Scholar 

  125. Raskin P, Rendell M, Riddle MC, et al. A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care 2001; 24(7): 1226–32

    Article  PubMed  CAS  Google Scholar 

  126. Modification to the warnings, precautions, and adverse reactions section of the labels for ACTOS and AVANDIA, 2002 Apr [online]. Avaiable from URL: http://www.fda.gov/medwatch/SAFETY/2002/summary-actos-avandia.PDF [Accessed 2002 Jul 17]

  127. Henry RR. Thiazolidinediones. Endocrin Metab Clin North Am 1997; 26(3): 553–73

    Article  CAS  Google Scholar 

  128. Nolan JJ, Ludvik B, Beerdsen P, et al. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994; 331(18): 1188–93

    Article  PubMed  CAS  Google Scholar 

  129. Dunaif A, Scott D, Finegood D, et al. The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. J Clin Endocrinol Metab 1996; 81(9): 3299–306

    Article  PubMed  CAS  Google Scholar 

  130. Fujiwara T, Horikoshi H. Troglitazone and related compounds: therapeutic potential beyond diabetes. Life Sci 2000; 67(20): 2405–16

    Article  PubMed  CAS  Google Scholar 

  131. Suter SL, Nolan JJ, Wallace P, et al. Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 1992; 15(2): 193–203

    Article  PubMed  CAS  Google Scholar 

  132. Scheen AJ, Lefèbvre PJ. Troglitazone: antihyperglycemic activity and potential role in the treatment of type 2 diabetes. Diabetes Care 1999; 22(9): 1568–77

    Article  PubMed  CAS  Google Scholar 

  133. Patel J, Anderson RJ, Rappaport EB. Rosiglitazone monotherapy improves glycaemic control in patients with type 2 diabetes: a twelve-week, randomized, placebo-controlled study. Diabetes Obes Metab 1999; 1(3): 165–72

    Article  PubMed  CAS  Google Scholar 

  134. Mori Y, Kurokawa N, Komiya H, et al. Gender difference in promotion of subcutaneous fat accumulation with long-term troglitazone treatment [abstract]. Diabetologia 1999; 42 Suppl. 1: A228

    Google Scholar 

  135. Parulkar AA, Pendergrass ML, Granda-Ayala R, et al. Nonhypoglycemic effects of thiazolidinediones. Ann Intern Med 2001; 134(1): 61–71

    PubMed  CAS  Google Scholar 

  136. Nolan JJ, Jones NP, Patwardhan R, et al. Rosiglitazone taken once daily provides effective glycaemic control in patients with type 2 diabetes mellitus. Diabet Med 2000; 17(4): 287–94

    Article  PubMed  CAS  Google Scholar 

  137. Raskin P, Rappaport EB, Cole ST, et al. Rosiglitazone short-term monotherapy lowers fasting and post-prandial glucose in patients with type II diabetes. Diabetologia 2000; 43(3): 278–84

    Article  PubMed  CAS  Google Scholar 

  138. Lebovitz HE, Dole JF, Patwardhan R, et al. Rosiglitazone monotherapy is effective in patients with type 2 diabetes. J Clin Endocrinol Metab 2001; 86(1): 280–8

    Article  PubMed  CAS  Google Scholar 

  139. Philips LS, Grunberger G, Miller E, et al. Once- and twice-daily dosing with rosiglitazone improves glycemic control in patients with type 2 diabetes. Diabetes Care 2001; 24(2): 308–15

    Article  Google Scholar 

  140. Wolffenbuttel BHR, Gomis R, Squatrito S, et al. Addition of low-dose rosiglitazone to sulphonylurea therapy improves glycaemic control in type 2 diabetic patients. Diabet Med 2000; 17(1): 40–7

    Article  PubMed  CAS  Google Scholar 

  141. Fonseca V, Rosenstock J, Patwardhan R, et al. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA 2000; 283(13): 1695–702

    Article  PubMed  CAS  Google Scholar 

  142. Goldstein BJ, Salzman A. Rosiglitazone is effective in poorly controlled type 2 diabetes patients [abstract]. Diabetologia 1999; 42 Suppl. 1: A229

    Google Scholar 

  143. Lord J, Paisley S, Taylor R. The clinical effectiveness and cost-effectiveness of rosiglitazone for type 2 diabetes mellitus. London: National Institute for Clinical Excellence, 2000 Aug [online]. Available from URL: http://www.nice.org.uk [Accessed 2002 Feb 4]

  144. Stewart M, Jones NP, Kreider M, et al. Combined effects of rosiglitazone and atorvastatin on the dyslipidaemia associated with type 2 diabetes [abstract]. Diabetologia 2001; 44 Suppl. 1: A854

    Google Scholar 

  145. Miyazaki Y, Glass L, Triplitt C, et al. Effect of rosiglitazone on glucose and non-esterified fatty acid metabolism in type 2 diabetic patients. Diabetologia 2001; 44(12): 2210–9

    Article  PubMed  CAS  Google Scholar 

  146. Yang WS, Jeng CY, Wu TJ, et al. Synthetic PPARγ agonist rosiglitazone increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care 2002; 25(2): 376–80

    Article  PubMed  CAS  Google Scholar 

  147. Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86(5): 1930–5

    Article  PubMed  CAS  Google Scholar 

  148. Yamauchi T, Kamon J, Waki H, et al. The fat derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Med 2001; 7(8): 941–6

    Article  PubMed  CAS  Google Scholar 

  149. Kaneko T, Baba S, Toyota T. Dose finding study of AD-4833 in patients with NIDDM on diet therapy alone: double blind comparative study on four dosages. Jpn J Clin Exp Med 1997; 74: 1250–77

    Google Scholar 

  150. Kaneko T, Baba S, Toyota T. Clinical evaluation of an insulin-resistance improving agent, AD-4833, in patients with NIDDM on diet therapy alone: a placebo controlled double blind clinical study. Jpn J Clin Exp Med 1997; 74: 1491–514

    Google Scholar 

  151. Kaneko T, Baba S, Toyota T. Dose finding study of AD-4833 in patients with NIDDM on treatment with a sulfonylurea drug: single blind comparative study on four dosages. Jpn J Clin Exp Med 1997; 74: 1278–306

    Google Scholar 

  152. Kaneko T, Baba S, Toyota T. Clinical evaluation of an insulin-resistance improving agent, AD-4833, in patients with NIDDM on treatment with SU drug: a placebo controlled double blind clinical study. Jpn J Clin Exp Med 1997; 74: 1515–39

    Google Scholar 

  153. Aronoff S, Rosenblatt S, Braithwaite S, et al. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6 month randomised placebo-controlled dose-response study. The Pioglitazone Study Group. Diabetes Care 2000; 23(11): 1605–11

    Article  CAS  Google Scholar 

  154. Einhorn D, Rendell M, Rosenzweig J, et al. Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomised placebo-controlled study. The Pioglitazone 027 Study Group. Clin Ther 2000; 22: 1395–409

    CAS  Google Scholar 

  155. Rosenblatt S, Miskin B, Glazer NB, et al. The impact of pioglitazone on glycemic control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus. Coron Artery Dis 2001; 12(5): 413–23

    Article  PubMed  CAS  Google Scholar 

  156. Miyazaki Y, Mahankali A, Matsuda M, et al. Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care 2001; 24(4): 710–9

    Article  PubMed  CAS  Google Scholar 

  157. Kipnes MS, Krosnick A, Rendell MS, et al. Pioglitazone hydrochloride in combination with sulfonylurea therapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized placebo-controlled study. Am J Med 2001; 111(1): 10–7

    Article  PubMed  CAS  Google Scholar 

  158. Rosenstock J, Einhorn D, Hershon K, et al. Efficacy and safety of pioglitazone in type 2 diabetes: a randomized, placebo-controlled study in patients receiving stable insulin therapy. Int J Clin Pract 2002; 56(4): 251–7

    PubMed  CAS  Google Scholar 

  159. Yu S. Effect of pioglitazone on blood glucose following an oral glucose challenge [abstract]. Diabetes 2000; 49 Suppl. 1: A352

    Google Scholar 

  160. Tan MH, Johns D, Glazer NB, et al. Pioglitazone reduces atherogenic index of plasma, and indirect indicator of LDL particle size [abstract]. Diabetes 2001; 50 Suppl. 1: A133

    Article  Google Scholar 

  161. Winkler K, Friedrich I, Nauck M, et al. Pioglitazone reduces dense LDL-particles in patients with type 2 diabetes [abstract]. Diabetes 2001; 50 Suppl. 1: A147

    Google Scholar 

  162. Miyazaki Y, Matsuda M, DeFronzo RA. Dose-response effect of pioglitazone on insulin sensitivity and insulin secretion in type 2 diabetes. Diabetes Care 2002; 25(3): 517–23

    Article  PubMed  CAS  Google Scholar 

  163. Maruyama H, Matsunaga S, Tsumura K, et al. Effect of pioglitazone on serum adiponectin level, and it's relation to insulin resistance, glucose-lipid metabolism and abdominal fat distribution in type 2 diabetic patients [abstract]. Diabetes 2002; 51 Suppl. 2: A141

    Google Scholar 

  164. Kelly IE, Han TS, Walsh K, et al. Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care 1999; 22(2): 288–93

    Article  PubMed  CAS  Google Scholar 

  165. Caballero AE, Saouaf R, Lim SC, et al. The effects of troglitazone, an insulin-sensitizing agent, on the endothelial function in early and late type 2 diabetes: a placebo-controlled randomized clinical trial. Metabolism 2003; 52(2): 173–80

    Article  PubMed  CAS  Google Scholar 

  166. Minamikawa J, Tanaka S, Yamamuchi M, et al. Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 1998; 83(5): 1818–20

    Article  PubMed  CAS  Google Scholar 

  167. Hirayama H, Sugano M, Abe N, et al. Troglitazone, an antidiabetic drug, improves left ventricular mass and diastolic function in normotensive diabetic patients. Int J Cardiol 2001; 77(1): 75–9

    Article  PubMed  CAS  Google Scholar 

  168. Ghazzi MN, Perez JE, Antonucci TK, et al. Cardiac and glycemic benefits of troglitazone treatment in NIDDM. Diabetes 1997; 46(3): 433–9

    Article  PubMed  CAS  Google Scholar 

  169. Fonseca VA, Reynolds T, Hemphill D, et al. Effect of troglitazone on fibrinolysis and activated coagulation in patients with non-insulin-dependent diabetes mellitus. J Diabetes Complications 1998; 12(4): 181–6

    Article  PubMed  CAS  Google Scholar 

  170. Nagasaka S, Nakamura T, Kusaka I, et al. Troglitazone reduces C-reactive protein in subjects with type 2 diabetes [abstract]. Diabetes 2002; 51 Suppl. 2: A142

    Google Scholar 

  171. Fujii M, Takemura R, Yamaguchi M, et al. Troglitazone (CS-045) ameliorates albuminuria in streptozotocin-induced diabetic rats. Metabolism 1997; 46(9): 981–3

    Article  PubMed  CAS  Google Scholar 

  172. Imano E, Kanda T, Nakatani Y, et al. Effect of troglitazone on microalbuminuria in patients with incipient diabetic nephropathy. Diabetes Care 1998; 21(12): 2135–9

    Article  PubMed  CAS  Google Scholar 

  173. Murata T, Hata Y, Ishibashi T, et al. Response of experimental retinal neovascularization to thiazolidinediones. Arch Ophthalmol 2001; 1119(5): 709–17

    Google Scholar 

  174. Haffner SM, Greennerg AS, Wayde M, et al. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002; 106(6): 679–84

    Article  PubMed  CAS  Google Scholar 

  175. Marx N, Imhof A, Froehlich J, et al. Effect of rosiglitazone treatment on soluble CD40L in patients with type 2 diabetes and coronary artery disease. Circulation 2003; 107: 1954–7

    Article  PubMed  CAS  Google Scholar 

  176. Miyazaki Y, Mahankali A, Matsuda M, et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 2002; 87(6): 2784–91

    Article  PubMed  CAS  Google Scholar 

  177. Miyazaki Y, Hardies LJ, Wajcberg E, et al. Effect of pioglitazone on liver fat content, abdominal fat distribution, and insulin sensitivity in patients with type 2 diabetes mellitus [abstract]. Diabetes 2002; 51 Suppl. 2: A69

    Google Scholar 

  178. King AB, Alcocer L, Armstrong DU. The effect of pioglitazone treatment on ALT levels [abstract]. Diabetes 2002; 51 Suppl. 2: A488

    Google Scholar 

  179. Banjeri M, Hlebovitz H, Dugbartey M. Rosiglitazone selectively increases subcutaneous but not visceral adipose tissue mass in type 2 diabetes mellitus [abstract]. Diabetes 2001; 50 Suppl. 2: A90

    Google Scholar 

  180. Virtanen KA, Hällsten K, Parkkola R, et al. Differential effects of rosiglitazone and metformin on adipose tissue distribution and glucose uptake in type 2 diabetic subjects. Diabetes 2003; 52(2): 283–90

    Article  PubMed  CAS  Google Scholar 

  181. Shadid S, Jensen MD. Comparison of diet/exercise and pioglitazone treatment on insulin action in upper body obesity [abstract]. Diabetes 2002; 51 Suppl. 2: A144

    Article  Google Scholar 

  182. Bakris GL, Dole JF, Porter LE, et al. Rosiglitazone improves blood pressure in patients with type 2 diabetes mellitus [abstract]. Diabetes 2000; 49 Suppl. 1: A96

    Google Scholar 

  183. Bennet SMA, Jones NP, Agrawal A, et al. Rosiglitazone improves insulin sensitivity and 24-h ambulatory blood pressure in subjects with impaired glucose tolerance [abstract]. Diabetologia 2001; 44 Suppl. 1: A770

    Google Scholar 

  184. Füllen S, Schneider F, Haake E, et al. Effects of pioglitazone in non-diabetic patients with arterial hypertension: a double-blind placebo-controlled study. J Clin Endocrinol Metab 2002; 87(12): 5503–6

    Article  CAS  Google Scholar 

  185. Walker AB, Chattington PD, Buckingham RE, et al. The thiazolidinedione rosiglitazone (BRL-49653) lowers blood pressure and protects against impairment of endothelial function in Zucker fatty rats. Diabetes 1999; 48(7): 1448–53

    Article  PubMed  CAS  Google Scholar 

  186. Kotchen TA, Zhang HY, Reddy S, et al. Effect of pioglitazone on vascular reactivity in vivo and in vitro. Am J Physiol 1996; 270 (3 Pt 2): R660–6

    PubMed  CAS  Google Scholar 

  187. Konrad T, Fuellert S, Schneider F, et al. Therapy with the glitazones over four months improves insulin sensitivity but not endothelial function in patients with diabetes mellitus 2 [abstract]. Diabetes 2001; 50 Suppl. 2: A123

    Google Scholar 

  188. Suzuki M, Takamisawa I, Suzuki K, et al. Close association between insulin resistance and vascular endothelial dysfunction in subjects with type 2 diabetes and improvement by pioglitazone [abstract]. Diabetes 2002; 52 Suppl. 2: A304

    Google Scholar 

  189. Mohanty P, Aljada A, Ghanim H, et al. Evidence for a potent anti-inflammatory effect of rosiglitazone in obese diabetes patients [abstract]. Diabetes 2002; 51 Suppl. 2: A109

    Google Scholar 

  190. Natali A, Baldeweg S, Toschi E, et al. Rosiglitazone directly improves endothelial function in type 2 diabetic patients [abstract]. Diabetes 2002; 51 Suppl. 2: A142

    Google Scholar 

  191. Quiñones MJ, Hernandez-Pampaloni M, Chon Y, et al. Improvement of coronary artery endothelial dysfunction in insulin resistant patients after treatment with insulin-sensitizing thiazolidinediones [abstract]. Diabetes 2002; 51 Suppl. 2: A172

    Google Scholar 

  192. Stephens TW, Bergman JA, Bue-Valleskey JM, et al. Thiazolidinedione induced cardiac biochemical changes and increased IGF-1 action on cardiomyocytes [abstract]. Diabetologia 1995; 38 Suppl. 1: A200

    Google Scholar 

  193. Breider MA, Gough AW, Haskins JR, et al. Troglitazone-induced heart and adipose tissue cell proliferation in mice. Toxicol Pathol 1999; 27(5): 545–52

    Article  PubMed  CAS  Google Scholar 

  194. Sutton M, Dole JF, Rappaport EB. Rosiglitazone does not adversely affect cardiac structure or function in patients with type 2 diabetes [abstract]. Diabetes 1999; 48 Suppl. 1: A102

    Google Scholar 

  195. Rubin CJ, Shaffer S, Pioglitazone 001 Study Group. Echocardiographic assessment in patients with type 2 diabetes mellitus treated with pioglitazone [abstract]. Diabetes 2000; 49 Suppl. 1: A364

    Google Scholar 

  196. Schneider RL, Shaffer S, Pioglitazone 011 Study Group. Long-term echocardiographic assessment in patients with type 2 diabetes mellitus treated with pioglitazone [abstract]. Diabetes 2000; 49 Suppl. 1: A124

    Google Scholar 

  197. Plummer EV, Lawson M, Domb A, et al. Effects of treatment with rosiglitazone on myocardial blood flow in type 2 diabetes [abstract].Diabetes 2002; 51 Suppl. 2: A161

    Google Scholar 

  198. Nuutila P, Hällesten K, Virtanen KA, et al. Rosiglitazone but not metformin enhances insulin stimulated myocardial glucose uptake in patients with type 2 diabetes [abstract]. Diabetes 2002; 51 Suppl. 2: A142

    Google Scholar 

  199. Bakris G, Viberti G, Weston WM, et al. Rosiglitazone reduced urinary albumin excretion in type 2 diabetes. J Hum Hypertension 2003; 17(1): 7–12

    Article  CAS  Google Scholar 

  200. Perez A, Cichy S, Glazer B. Progression of microalbuminuria during a long-term open-label trial of pioglitazone in patients with type 2 diabetes mellitus [abstract]. Diabetes 2002; 51 Suppl. 2: A111

    Google Scholar 

  201. Emoto M, Anno T, Sato Y, et al. Troglitazone treatment increases plasma vascular endothelial growth factor in diabetic patients and its mRNA in 3T3-L1 adipocytes. Diabetes 2001; 50(5): 1166–70

    Article  PubMed  CAS  Google Scholar 

  202. Baba T, Shimada K, Neugebauer S, et al. The oral insulin sensitizer, thiazolidinedione, increases plasma vascular endothelial growth factor in type 2 diabetic patients. Diabetes Care 2001; 24(5): 953–4

    Article  PubMed  CAS  Google Scholar 

  203. Gegick CG, Altheimer MD. Thiazolidinediones: comparison of long-term effects on lipids [abstract]. Diabetes 2002; 51 Suppl. 2: A423

    Google Scholar 

  204. Smith U. Pioglitazone: mechanism of action. Int J Clin Pract Suppl 2001 Sep; 121: 13–8

    PubMed  CAS  Google Scholar 

  205. Lebovitz HE. Differentiating members of the thiazolidinedione class: a focus on safety. Diabetes Metab Res Rev 2002; 18 Suppl. 2: S23–9

    Article  PubMed  CAS  Google Scholar 

  206. Center for Drug Evaluation and Research [US Food and Drug Administration Web site]. New and generic drig approvals 1998–2000: medical and statistical reviews, 2000 [online]. Available from URL: http://www.fda.gov/cder/foi/nda/99/021073A_Actos.htm [Accessed 2002 Jul 17]

  207. King AB, Armstrong D. Characteristics of the patients who gain weight while on pioglitazone treatment [abstract]. Diabetes 2001; 50 Suppl. 1: A120

    Google Scholar 

  208. Walker AB, Naderali EK, Chattington PD, et al. Differential vasoactive effects on the insulin sensitizers rosiglitazone and troglitazone on human small arteries in vitro. Diabetes 1998; 47(5): 810–4

    Article  PubMed  CAS  Google Scholar 

  209. Dogterom P, Jonkman JHG, Vallance SE. Rosiglitazone: no effect on erythropoiesis or premature red cell destruction [abstract]. Diabetes 1999; 48 Suppl. 1: A98

    Google Scholar 

  210. Murase Y, Wakasugi T, Yagi K, et al. Deterioration of glycemic control after long-term treatment with troglitazone in nonobese type 2 diabetic patients. Diabetes Care 2000; 23(1): 131–2

    Article  PubMed  CAS  Google Scholar 

  211. Rosenblatt SI, Yoder CL, Albert JE, et al. Actos vs Avandia: comparison of conversion from rezulin on significant clinical parameters [abstract]. Diabetes 2002; 51 Suppl. 2: A143

    Google Scholar 

  212. Lefebvre AM, Chen I, Desreumaux P, et al. Activation of the PPARγ promotes the development of colon tumors in C57BL/6J-APC −/+ mice. Nat Med 1998; 4: 1053–7

    Article  PubMed  CAS  Google Scholar 

  213. Saez E, Tontonoz P, Nelson MC, et al. Activators of the nuclear receptor PPARγ enhance colon polyp formation. Nat Med 1998; 4: 1058–61

    Article  PubMed  CAS  Google Scholar 

  214. Wu L, Eftekharpour E, Davies GF, et al. Troglitazone selectively inhibits glyoxalase I gene expression. Diabetologia 2001; 44: 2004–12

    Article  PubMed  CAS  Google Scholar 

  215. Thornalley PJ. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 1990; 269: 1–11

    PubMed  CAS  Google Scholar 

  216. Schwartz AV, Sell Meyer DE, Feingold KR, et al. Thiazolidinedione use and bone density in older adults with diabetes [abstract]. Diabetes 2002; 51 Suppl. 2: A237

    Google Scholar 

  217. Jilka RL, Lecka-Czernik B, Ali AA, et al. Activation of PPARγ2 by rosiglitazone causes bone loss associated with increased marrow adiposity and decreased osteoblast number in mice [abstract]. J Bone Miner Res 2001; 16: S319

    Article  Google Scholar 

  218. Viberti G, Kahn SE, Greene DA, et al. A Diabetes Outcome Progression Trial (ADOPT): an international multicenter study of the comparative efficacy of rosiglitazone, glyburide, and metformin in recently diagnosed type 2 diabetes. Diabetes Care 2002; 25(10): 1737-43

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Diamant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diamant, M., Heine, R.J. Thiazolidinediones in Type 2 Diabetes Mellitus. Drugs 63, 1373–1406 (2003). https://doi.org/10.2165/00003495-200363130-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200363130-00004

Keywords

Navigation