Skip to main content
Log in

Safety of Non-Antiarrhythmic Drugs that Prolong the QT Interval or Induce Torsade de Pointes

An Overview

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

The long and growing list of non-antiarrhythmic drugs associated with prolongation of the QT interval of the electrocardiogram has generated concern not only for regulatory interventions leading to drug withdrawal, but also for the unjustified view that QT prolongation is usually an intrinsic effect of a whole therapeutic class [e.g. histamine H1 receptor antagonists (antihistamines)], whereas, in many cases, it is displayed only by some compounds within a given class of non-antiarrhythmic drugs because of an effect on cardiac repolarisation. We provide an overview of the different classes of non-antiarrhythmic drugs reported to prolong the QT interval (e.g. antihistamines, antipsychotics, antidepressants and macrolides) and discusses the clinical relevance of the QT prolonging effect. Drug-induced torsade de pointes are sometimes considered idiosyncratic, totally unpredictable adverse drug reactions, whereas a number of risk factors for their occurrence is now recognised. Widespread knowledge of these risk factors and implementation of a comprehensive list of QT prolonging drugs becomes an important issue. Risk factors include congenital long QT syndrome, clinically significant bradycardia or heart disease, electrolyte imbalance (especially hypokalaemia, hypomagnesaemia, hypocalcaemia), impaired hepatic/renal function, concomitant treatment with other drugs with known potential for pharmacokinetic/pharmacodynamic interactions (e.g. azole antifungals, macrolide antibacterials and class I or III antiarrhythmic agents). This review provides insight into the strategies that should be followed during a drug development program when a drug is suspected to affect the QT interval. The factors limiting the predictive value of preclinical and clinical studies are also outlined.

The sensitivity of preclinical tests (i.e. their ability to label as positive those drugs with a real risk of inducing QT pronglation in humans) is sufficiently good, but their specificity (i.e. their ability to label as negative those drugs carrying no risk) is not well established. Verapamil is a notable example of a false positive: it blocks human ether-a-go-go-related (HERG) K+ channels, but is reported to have little potential to trigger torsade de pointes. Although inhibition of HERG K+ channels has been proposed as a primary test for screening purposes, it is important to remember that several ion currents are involved in the generation of the cardiac potential and that metabolites must be specifically tested in this in vitro test. At the present state of knowledge, no preclinical model has an absolute predictive value or can be considered as a gold standard. Therefore, the use of several models facilitates decision making and is recommended by most experts in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Fig. 1
Table V
Table VI

Similar content being viewed by others

References

  1. De Ponti F, Poluzzi E, Montanaro N. QT-interval prolongation by non-cardiac drugs: lessons to be learned from recent experience. Eur J Clin Pharmacol 2000; 56: 1–18

    Article  PubMed  Google Scholar 

  2. Haverkamp W, Breithardt G, Camm AJ, et al. The potential for QT prolongation and proarrhythmia by non-antiarrhythmic drugs: clinical and regulatory implications. Report on a policy conference of the European Society of Cardiology. Eur Heart J 2000; 21: 1216–31

    Article  PubMed  CAS  Google Scholar 

  3. European Agency for the Evaluation of Medicinal Products (EMEA): Committee for Proprietary Medicinal Products (CPMP): points to consider: the assessment of the potential for QT interval prolongation by non-cardiovascular medicinal products [online]. Available from URL: http://www.emea.eu.int/pdfs/human/swp/098696en.pdf [Accessed 2002 Apr 14]

  4. Zhang MQ. Chemistry underlying the cardiotoxicity of antihistamines. Curr Med Chem 1997; 4: 171–84

    CAS  Google Scholar 

  5. Ten Eick AP, Blumer JL, Reed MD. Safety of antihistamines in children. Drug Saf 2001; 24: 119–47

    Article  PubMed  Google Scholar 

  6. Walsh GM, Annunziato L, Frossard N, et al. New insights into the second generation antihistamines. Drugs 2001; 61: 207–36

    Article  PubMed  CAS  Google Scholar 

  7. Kang J, Wang L, Chen XL, et al. Interactions of a series of fluoroquinolone antibacterial drugs with the human cardiac K+ channel HERG. Mol Pharmacol 2001; 59: 122–6

    PubMed  CAS  Google Scholar 

  8. Owens RCJ. Risk assessment for antimicrobial agent-induced QTc interval prolongation and torsade de pointes. Pharmacotherapy 2001; 21: 301–19

    Article  PubMed  CAS  Google Scholar 

  9. Potet F, Bouyssou T, Escande D, et al. Gastrointestinal prokinetic drugs have different affinity for the human cardiac human ether-a-gogo K(+) channel. J Pharmacol Exp Ther 2001; 299: 1007–12

    PubMed  CAS  Google Scholar 

  10. Glassman AH, Bigger JTJ. Antipsychotic drugs: prolonged QTc interval, torsade de pointes, and sudden death. Am J Psychiatry 2001; 158: 1774–82

    Article  PubMed  CAS  Google Scholar 

  11. Malik M, Camm AJ. Evaluation of drug-induced QT interval prolongation: implications for drug approval and labelling. Drug Saf 2001; 24: 323–51

    Article  PubMed  CAS  Google Scholar 

  12. Roden DM. Antiarrhythmic drugs. In: Hardman, Goodman Gilman, Limbird, editors. The pharmacological basis of therapeutics. New York: McGraw-Hill, 2001: 839–874

    Google Scholar 

  13. Suessbrich H, Waldegger S, Lang F, et al. Blockade of HERG channels expressed in Xenopus oocytes by the histamine receptor antagonists terfenadine and astemizole. FEBS Lett 1996; 385: 77–80

    Article  PubMed  CAS  Google Scholar 

  14. Taglialatela M, Pannaccione A, Castaldo P, et al. Molecular basis for the lack of HERG K+ channel block-related cardiotoxicity by the H1 receptor blocker cetirizine compared with other second-generation antihistamines. Mol Pharmacol 1998; 54: 113–21

    PubMed  CAS  Google Scholar 

  15. Bischoff U, Schmidt C, Netzer R, et al. Effects of fluoroquinolones on HERG currents. Eur J Pharmacol 2000; 406: 341–3

    Article  PubMed  CAS  Google Scholar 

  16. Tie H, Walker BD, Valenzuela SM, et al. The heart of psychotropic drug therapy [letter]. Lancet 2000; 355: 1825

    Article  PubMed  CAS  Google Scholar 

  17. Suessbrich H, Schonherr R, Heinemann SH, et al. The inhibitory effect of the antipsychotic drug haloperidol on HERG potassium channels expressed in Xenopus oocytes. Br J Pharmacol 1997; 120: 968–74

    Article  PubMed  CAS  Google Scholar 

  18. Pond AL, Nerbonne JM. ERG proteins and functional cardiac I(Kr) channels in rat, mouse, and human heart. Trends Cardiovasc Med 2001; 11: 286–94

    Article  PubMed  CAS  Google Scholar 

  19. Fedida D, Chen FS, Zhang X. The 1997 Stevenson Award Lecture. Cardiac K+ channel gating: cloned delayed rectifier mechanisms and drug modulation. Can J Physiol Pharmacol 1998; 76: 77–89

    PubMed  CAS  Google Scholar 

  20. Nattel S. The molecular and ionic specificity of antiarrhythmic drug actions. J Cardiovasc Electrophysiol 1999; 10: 272–82

    Article  PubMed  CAS  Google Scholar 

  21. Vandenberg JI, Walker BD, Campbell TJ. HERGK(+) channels: friend and foe. Trends Pharmacol Sci 2001; 22: 240–6

    Article  PubMed  CAS  Google Scholar 

  22. Shieh CC, Coghlan M, Sullivan JP, et al. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 2000; 52: 557–94

    PubMed  CAS  Google Scholar 

  23. Towbin JA, Vatta M. Molecular biology and the prolonged QT syndromes. Am J Med 2001; 110: 385–98

    Article  PubMed  CAS  Google Scholar 

  24. Tseng GN. I(Kr): The hERG Channel. J Mol Cell Cardiol 2001; 33: 835–49

    Article  PubMed  CAS  Google Scholar 

  25. Roden DM, George ALJ. Structure and function of cardiac sodium and potassium channels. Am J Physiol 1997; 273:H511–25

    PubMed  CAS  Google Scholar 

  26. Karagueuzian HS. Acquired long QT syndromes and the risk of proarrhythmia [letter]. J Cardiovasc Electrophysiol 2000; 11: 1298

    Article  Google Scholar 

  27. Pacher P, Ungvari Z, Nanasi PP, et al. Speculations on difference between tricyclic and selective serotonin reuptake inhibitor antidepressants on their cardiac effects. Is there any? Curr Med Chem 1999; 6: 469–80

    CAS  Google Scholar 

  28. Nau C, Seaver M, Wang SY, et al. Block of human heart hH1 sodium channels by amitriptyline. J Pharmacol Exp Ther 2000; 292: 1015–23

    PubMed  CAS  Google Scholar 

  29. Isenberg G, Tamargo J. Effect of imipramine on calcium and potassium currents in isolated bovine ventricular myocytes. Eur J Pharmacol 1985; 108: 121–31

    Article  PubMed  CAS  Google Scholar 

  30. Delpon E, Tamargo J, Sanchez-Chapula J. Further characterization of the effects of imipramine on plateau membrane currents in guinea-pig ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol 1991; 344: 645–52

    Article  PubMed  CAS  Google Scholar 

  31. Reich MR, Ohad DG, Overall KL, et al. Electrocardiographic assessment of antianxiety medication in dogs and correlation with serum drug concentration [published erratum appears in J Am Vet Med Assoc 2000 Jun 15; 216 (12): 1936]. J Am Vet Med Assoc 2000; 216: 1571–5

    Article  PubMed  CAS  Google Scholar 

  32. Kennerdy A, Thomas P, Sheridan DJ. Generalized seizures as the presentation of flecainide toxicity. Eur Heart J 1989; 10: 950–4

    PubMed  CAS  Google Scholar 

  33. Platia EV, Estes M, Heine DL, et al. Flecainide: electrophysiologic and antiarrhythmic properties in refractory ventricular tachycardia. Am J Cardiol 1985; 55: 956–62

    Article  PubMed  CAS  Google Scholar 

  34. Bruelle P, LeFrant JY, de La Coussaye JE, et al. Comparative electrophysiologic and hemodynamic effects of several amide local anesthetic drugs in anesthetized dogs. Anesth Analg 1996; 82: 648–56

    PubMed  CAS  Google Scholar 

  35. Sheridan DJ. Drug-induced proarrhythmic effects: assessment of changes in QT interval. Br J Clin Pharmacol 2000; 50: 297–302

    Article  PubMed  CAS  Google Scholar 

  36. O’Leary ME. Inhibition of human ether-a-go-go potassium channels by cocaine. Mol Pharmacol 2001; 59: 269–77

    PubMed  Google Scholar 

  37. Zhang S, Rajamani S, Chen Y, et al. Cocaine blocks HERG, but not KvLQT1+minK, potassium channels. Mol Pharmacol 2001; 59: 1069–76

    PubMed  CAS  Google Scholar 

  38. Sesti F, Abbott GW, Wei J, et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc Natl Acad Sci U S A 2000; 97: 10613–8

    Article  PubMed  CAS  Google Scholar 

  39. Gamouras GA, Monir G, Plunkitt K, et al. Cocaine abuse: repolarization abnormalities and ventricular arrhythmias. Am J Med Sci 2000; 320: 9–12

    Article  PubMed  CAS  Google Scholar 

  40. Parker RB, Perry GY, Horan LG, et al. Comparative effects of sodium bicarbonate and sodium chloride on reversing cocaine-induced changes in the electrocardiogram. J Cardiovasc Pharmacol 1999; 34: 864–9

    Article  PubMed  CAS  Google Scholar 

  41. Wang RY. pH-dependent cocaine-induced cardiotoxicity. Am J Emerg Med 1999; 17: 364–9

    Article  PubMed  CAS  Google Scholar 

  42. Darpo B. Spectrum of drugs prolonging QT interval and the incidence of torsade de pointes. Eur Heart J 2001; 3Suppl.: K70–80

    CAS  Google Scholar 

  43. Yap YG, Camm J. Risk of torsade de pointes with non-cardiac drugs. Doctors need to be aware that many drugs can cause QT prolongation. BMJ 2000; 320: 1158–9

    Article  PubMed  CAS  Google Scholar 

  44. Wiener I, Rubin DA, Martinez E, et al. QT prolongation and paroxysmal ventricular tachycardia occurring during fever following trimethoprim-sulfamethoxazole administration. Mt Sinai J Med 1981; 48: 53–5

    PubMed  CAS  Google Scholar 

  45. Lopez JA, Harold JG, Rosenthal MC, et al. QT prolongation and torsade de pointes after administration of trimethoprimsulfamethoxazole. Am J Cardiol 1987; 59: 376–7

    Article  PubMed  CAS  Google Scholar 

  46. Zhou Z, Vorperian VR, Gong Q, et al. Block of HERG potassium channels by the antihistamine astemizole and its metabolites desmethylastemizole and norastemizole. J Cardiovasc Electrophysiol 1999; 10: 836–43

    Article  PubMed  CAS  Google Scholar 

  47. De Ponti F, Poluzzi E, Montanaro N. Organising evidence on QT prolongation and occurrence of torsade de pointes with non-antiarrhythmic drugs: a call for consensus. Eur J Clin Pharmacol 2001; 57: 185–209

    Article  PubMed  CAS  Google Scholar 

  48. Wassmann S, Nickenig G, Bohm M. Long QT syndrome and torsade de pointes in a patient receiving fluconazole [letter]. Ann Intern Med 1999; 131: 797

    PubMed  CAS  Google Scholar 

  49. Tholakanahalli VN, Potti A, Hanley JF, et al. Fluconazole-induced torsade de pointes. Ann Pharmacother 2001; 35: 432–4

    Article  PubMed  CAS  Google Scholar 

  50. Dumaine R, Roy ML, Brown AM. Blockade of HERG and Kv1.5 by ketoconazole. J Pharmacol Exp Ther 1998; 286: 727–35

    PubMed  CAS  Google Scholar 

  51. Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin Pharmacokinet 2000; 38: 111–80

    Article  PubMed  CAS  Google Scholar 

  52. Saarnivaara L, Hiller A, Oikkonen M. QT interval, heart rate and arterial pressures using propofol, thiopentone or methohexitone for induction of anaesthesia in children. Acta Anaesthesiol Scand 1993; 37: 419–23

    Article  PubMed  CAS  Google Scholar 

  53. Saarnivaara L, Klemola UM, Lindgren L, et al. QT interval of the ECG, heart rate and arterial pressure using propofol, methohexital or midazolam for induction of anaesthesia. Acta Anaesthesiol Scand 1990; 34: 276–81

    Article  PubMed  CAS  Google Scholar 

  54. Michaloudis DG, Kanakoudis FS, Petrou AM, et al. The effects of midazolam or propofol followed by suxamethonium on the QT interval in humans. Eur J Anaesthesiol 1996; 13: 364–8

    Article  PubMed  CAS  Google Scholar 

  55. Azzolini M, Ragagni M, Pfaender M, et al. La sindrome idiopatica del QT lungo. Variazioni della durata del QTc durante anestesia con propofol. Minerva Anestesiol 1993; 59: 377–80

    PubMed  CAS  Google Scholar 

  56. Michaloudis D, Fraidakis O, Kanoupakis E, et al. Idiopathic prolonged QT interval and QT dispersion: the effects of propofol during implantation of cardioverter-defibrillator. Eur J Anaesthesiol 1999; 16: 842–7

    PubMed  CAS  Google Scholar 

  57. Pinto YM, van Gelder IC, Heeringa M, et al. QT lengthening and life-threatening arrhytmias associated with fexofenadine [letter]. Lancet 1999; 353: 980

    Article  PubMed  CAS  Google Scholar 

  58. Yan GX, Wu Y, Liu T, et al. Phase 2 early afterdepolarization as a trigger of polymorphic ventricular tachycardia in acquired long-qt syndrome: direct evidence from intracellular recordings in the intact left ventricular wall. Circulation 2001; 103: 2851–6

    Article  PubMed  CAS  Google Scholar 

  59. Haverkamp W, Eckardt L, Mönnig G, et al. Clinical aspects of ventricular arrhythmias associated with QT prolongation. Eur Heart J 2001; 3Suppl.: K81–8

    CAS  Google Scholar 

  60. Morganroth J. Focus on issues in measuring and interpreting changes in the QTc interval duration. Eur Heart J 2001; 3Suppl.: K105–11

    Google Scholar 

  61. Paltoo B, O’Donoghue S, Mousavi MS. Levofloxacin induced polymorphic ventricular tachycardia with normal QT interval. Pacing Clin Electrophysiol 2001; 24: 895–7

    Article  PubMed  CAS  Google Scholar 

  62. Drici MD. Influence of gender on drug-acquired long QT syndrome. Eur Heart J 2001; 3Suppl.: K41–7

    CAS  Google Scholar 

  63. Drici MD, Clement N. Is gender a risk factor for adverse drug reactions?. The example of drug-induced long QT syndrome. Drug Saf 2001; 24: 575–85

    Article  PubMed  CAS  Google Scholar 

  64. Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 2001; 103: 89–95

    Article  PubMed  CAS  Google Scholar 

  65. Antzelevitch C. Heterogeneity of cellular repolarization in LQTS: the role of M cells. Eur Heart J 2001; 3Suppl.: K2–16

    CAS  Google Scholar 

  66. Yan GX, Rials SJ, Wu Y, et al. Ventricular hypertrophy amplifies transmural repolarization dispersion and induces early after depolarization. Am J Physiol 2001; 281: H1968–75

    CAS  Google Scholar 

  67. Kääb S, Näbauer M. Diversity of ion channel expression in health and disease. Eur Heart J 2001; 3Suppl.: K31–40

    Google Scholar 

  68. Curb JD, Rodriguez BL, Burchfiel CM, et al. Sudden death, impaired glucose tolerance, and diabetes in Japanese American men. Circulation 1995; 91: 2591–5

    Article  PubMed  CAS  Google Scholar 

  69. Brown DW, Giles WH, Greenlund KJ, et al. Impaired fasting glucose, diabetes mellitus, and cardiovascular disease risk factors are associated with prolonged QTc duration. Results from the Third National Health and Nutrition Examination Survey. J Cardiovasc Risk 2001; 8: 227–33

    Article  PubMed  CAS  Google Scholar 

  70. Thompson R, Rich J, Chmelik F, et al. Evolutionary changes in the electrocardiogram of severe progressive hypothermia. J Electrocardiol 1977; 10: 67–70

    Article  PubMed  CAS  Google Scholar 

  71. Mortensen E, Berntsen R, Tveita T, et al. Changes in ventricular fibrillation threshold during acute hypothermia. A model for future studies. J Basic Clin Physiol Pharmacol 1993; 4: 313–9

    Article  PubMed  CAS  Google Scholar 

  72. Bernardi M, Calandra S, Colantoni A, et al. Q-T interval prolongation in cirrhosis: prevalence, relationship with severity, and etiology of the disease and possible pathogenetic factors. Hepatology 1998; 27: 28–34

    Article  PubMed  CAS  Google Scholar 

  73. Reiffel JA, Appel G. Importance of QT interval determination and renal function assessment during antiarrhythmic drug therapy. J Cardiovasc Pharmacol Ther 2001; 6: 111–9

    Article  PubMed  CAS  Google Scholar 

  74. Idle JR. The heart of psychotropic drug therapy. Lancet 2000; 355: 1824–5

    Article  PubMed  CAS  Google Scholar 

  75. Bauman JL. The role of pharmacokinetics, drug interactions and pharmacogenetics in the acquired long QT syndrome. Eur Heart J 2001; 3Suppl.: K93–100

    CAS  Google Scholar 

  76. Ford GA, Wood SM, Daly AK. CYP2D6 and CYP2C19 genotypes of patients with terodiline cardiotoxicity identified through the yellow card system. Br J Clin Pharmacol 2000; 50: 77–80

    Article  PubMed  CAS  Google Scholar 

  77. Murakawa Y, Yamashita T, Ajiki K, et al. Ostensible day-night difference of QT prolongation during long-term treatment with antiarrhythmic drugs: reappraisal of the law of ‘regression to the mean’. J Cardiovasc Pharmacol 1998; 32: 62–5

    Article  PubMed  CAS  Google Scholar 

  78. Lande G, Kyndt F, Baro I, et al. Dynamic analysis of the QT interval in long QT1 syndrome patients with a normal phenotype. Eur Heart J 2001; 22: 410–22

    Article  PubMed  CAS  Google Scholar 

  79. Donger C, Denjoy I, Berthet M, et al. KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation 1997; 96: 2778–81

    Article  PubMed  CAS  Google Scholar 

  80. Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome: clinical impact. Circulation 1999; 99: 529–33

    Article  PubMed  CAS  Google Scholar 

  81. Malik M, Batchvarov VN. Measurement, interpretation and clinical potential of QT dispersion. J Am Coll Cardiol 2000; 36: 1749–66

    Article  PubMed  CAS  Google Scholar 

  82. Murray A, McLaughlin NB, Bourke JP, et al. Errors in manual measurement of QT intervals. Br Heart J 1994; 71: 386–90

    Article  PubMed  CAS  Google Scholar 

  83. Fisch C. Centennial of the string galvanometer and the electrocardiogram. J Am Coll Cardiol 2000; 36: 1737–45

    Article  PubMed  CAS  Google Scholar 

  84. Bonate PL, Russell T. Assessment of QTc prolongation for noncardiac-related drugs from a drug development perspective. J Clin Pharmacol 1999; 39: 349–58

    Article  PubMed  CAS  Google Scholar 

  85. Bonate PL. Rank power of metrics used to assess QTc interval prolongation by clinical trial simulation. J Clin Pharmacol 2000; 40: 468–74

    Article  PubMed  CAS  Google Scholar 

  86. Malik M. QT dispersion: time for an obituary? Eur Heart J 2000; 21: 955–7

    Article  PubMed  CAS  Google Scholar 

  87. Krahn AD, Nguyen-Ho P, Klein GJ, et al. QT dispersion: an electrocardiographic derivative of QT prolongation. Am Heart J 2001; 141: 111–6

    Article  PubMed  CAS  Google Scholar 

  88. Malik M. Problems of heart rate correction in assessment of drug-induced QT interval prolongation. J Cardiovasc Electrophysiol 2001; 12: 411–20

    Article  PubMed  CAS  Google Scholar 

  89. Bednar MM, Harrigan EP, Anziano RJ, et al. The QT interval. Prog Cardiovasc Dis 2001; 43: 1–45

    PubMed  CAS  Google Scholar 

  90. Funck-Brentano C, Jaillon P. Rate-corrected QT interval: techniques and limitations. Am J Cardiol 1993; 72: B17–22

    Article  Google Scholar 

  91. Aytemir K, Maarouf N, Gallagher MM, et al. Comparison of formulae for heart rate correction of QT interval in exercise electrocardiograms. Pacing Clin Electrophysiol 1999; 22: 1397–401

    Article  PubMed  CAS  Google Scholar 

  92. Cavero I, Mestre M, Guillon JM, et al. Drugs that prolong QT interval as an unwanted effect: assessing their likelihood of inducing hazardous cardiac dysrhythmias. Expert Opin Pharmacother 2000; 1: 947–73

    Article  PubMed  CAS  Google Scholar 

  93. Puddu PE, Jouve R, Mariotti S, et al. Evaluation of 10 QT prediction formulas in 881 middle-aged men from the seven countries study: emphasis on the cubic root Fridericia’s equation. J Electrocardiol 1988; 21: 219–29

    Article  PubMed  CAS  Google Scholar 

  94. Dabrowski A, Kramarz E, Kubik L. Prolongation of QT interval corrected for heart rate by Bazett’s equation and linear formula as predictor of arrhythmic events after myocardial infarction. Am J Cardiol 2000; 86: 469–72

    Article  Google Scholar 

  95. Volders PG, Vos MA, Szabo B, et al. Progress in the understanding of cardiac early afterdepolarizations and torsade de pointes: time to revise current concepts. Cardiovasc Res 2000; 46: 376–92

    Article  PubMed  CAS  Google Scholar 

  96. Oberg KC, Bauman JL. QT interval prolongation and torsade de pointes due to erythromycin lactobionate. Pharmacotherapy 1995; 15: 687–92

    PubMed  CAS  Google Scholar 

  97. Chiang CE, Roden DM. The long QT syndromes: genetic basis and clinical implications. J Am Coll Cardiol 2000; 36: 1–12

    Article  PubMed  CAS  Google Scholar 

  98. Napolitano C, Schwartz PJ, Brown AM, et al. Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias. J Cardiovasc Electrophysiol 2000; 11: 691–6

    Article  PubMed  CAS  Google Scholar 

  99. Makkar RR, Fromm BS, Steinman RT, et al. Female gender as a risk factor for torsade de pointes associated with cardiovascular drugs. JAMA 1993; 270: 2590–7

    Article  PubMed  CAS  Google Scholar 

  100. Rodriguez I, Kilborn MJ, Liu XK, et al. Drug-induced QT prolongation in women during the menstrual cycle. JAMA 2001; 285: 1322–6

    Article  PubMed  CAS  Google Scholar 

  101. Schwartz JB. The electrocardiographic QT interval and its prolongation in response to medications: differences between men and women. J Gend Specif Med 2000; 3: 25–8

    PubMed  CAS  Google Scholar 

  102. Roden DM. Taking the ‘idio’ out of ‘idiosyncratic’: predicting torsade de pointes. Pacing Clin Electrophysiol 1998; 21: 1029–34

    Article  PubMed  CAS  Google Scholar 

  103. Darbar D, Fromm MF, Dellorto S, et al. Sympathetic activation enhances QT prolongation by quinidine. J Cardiovasc Electrophysiol 2001; 12: 9–14

    Article  PubMed  CAS  Google Scholar 

  104. Kitayama H, Kiuchi K, Nejima J, et al. Long-term treatment with antipsychotic drugs in conventional doses prolonged QTc dispersion, but did not increase ventricular tachyarrhythmias in patients with schizophrenia in the absence of cardiac disease. Eur J Clin Pharmacol 1999; 55: 259–62

    Article  PubMed  CAS  Google Scholar 

  105. Reilly JG, Ayis SA, Ferrier IN, et al. QTc-interval abnormalities and psychotropic drug therapy in psychiatric patients. Lancet 2000; 355: 1048–52

    Article  PubMed  CAS  Google Scholar 

  106. Allen MJ, Nichols DJ, Oliver SD. The pharmacokinetics and pharmacodynamics of oral dofetilide after twice daily and three times daily dosing. Br J Clin Pharmacol 2000; 50: 247–53

    Article  PubMed  CAS  Google Scholar 

  107. Saul JP, Ross B, Schaffer MS, et al. Pharmacokinetics and pharmacodynamics of sotalol in a pediatric population with supra-ventricular and ventricular tachyarrhythmia. Clin Pharmacol Ther 2001; 69: 145–57

    Article  PubMed  CAS  Google Scholar 

  108. Roden DM. Acquired long QT syndromes and the risk of proarrhythmia. J Cardiovasc Electrophysiol 2000; 11: 938–40

    Article  PubMed  CAS  Google Scholar 

  109. Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 1999; 97: 175–87

    Article  PubMed  CAS  Google Scholar 

  110. Michiels M, Van Peer A, Woestenborghs R, et al. Pharmacokinetics and tissue distribution of astemizole in the dog. Drug Dev Res 1986; 8: 53–62

    Article  CAS  Google Scholar 

  111. Sugiyama A, Aye NN, Katahira S, et al. Effects of nonsedating antihistamine, astemizole, on the in situ canine heart assessed by cardiohemodynamic and monophasic action potential monitoring. Toxicol Appl Pharmacol 1997; 143: 89–95

    Article  PubMed  CAS  Google Scholar 

  112. Netzer R, Ebneth A, Bischoff U, et al. Screening lead compounds for QT interval prolongation. Drug Discov Today 2001; 6: 78–84

    Article  PubMed  CAS  Google Scholar 

  113. Champeroux P, Martel E, Vannier C, et al. The preclinical assessment of the risk for QT interval prolongation. Therapie 2000; 55: 101–9

    PubMed  CAS  Google Scholar 

  114. Crumb W, Cavero I. QT interval prolongation by non-cardiovascular drugs: issues and solutions for novel drug development. Pharm Sci Technol Today 1999; 2: 270–80

    Article  PubMed  CAS  Google Scholar 

  115. Puddu PE, Criniti A, Monti F. Screening for drug-induced (acquired) long QT syndrome: is it time to apply new methods? Eur Heart J 2001; 22: 363–9

    Article  PubMed  CAS  Google Scholar 

  116. Hondeghem LM, Carlsson L, Duker G. Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circulation 2001; 103: 2004–13

    Article  PubMed  CAS  Google Scholar 

  117. Cavero I, Crumb-WJ J. Native and cloned ion channels from human heart: laboratory models for evaluating the cardiac safety of new drugs. Eur Heart J 2001; 3Suppl.: K53–63

    CAS  Google Scholar 

  118. Moise NS, Gilmour RFJ, Riccio ML. An animal model of spontaneous arrhythmic death. J Cardiovasc Electrophysiol 1997; 8: 98–103

    Article  PubMed  CAS  Google Scholar 

  119. Surawicz B. U wave: facts, hypotheses, misconceptions, and misnomers. J Cardiovasc Electrophysiol 1998; 9: 1117–28

    Article  PubMed  CAS  Google Scholar 

  120. Vila JA, Gang Y, Rodriguez PJ, et al. A new approach for TU complex characterization. IEEE Trans Biomed Eng 2000; 47: 764–72

    Article  PubMed  CAS  Google Scholar 

  121. Ficker E, Jarolimek W, Kiehn J, et al. Molecular determinants of dofetilide block of HERG K+ channels. Circ Res 1998; 82: 386–95

    Article  PubMed  CAS  Google Scholar 

  122. Lees-Miller JP, Duan Y, Teng GQ, et al. Molecular determinant of high-affinity dofetilide binding to HERG1 expressed in Xenopus oocytes: involvement of S6 sites. Mol Pharmacol 2000; 57: 367–74

    PubMed  CAS  Google Scholar 

  123. Mitcheson JS, Chen J, Lin M, et al. A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci U S A 2000; 97: 12329–33

    Article  PubMed  CAS  Google Scholar 

  124. Wermuth CG, Langer T. Pharmacophore Identification. In: Kubinyi H, editor. 3D QSAR in Drug Design. Theory, Methods and Applications. Leiden: ESCOM, 1993: 117–136

    Google Scholar 

  125. Morgan TKJ, Sullivan ME. An overview of class III electrophysiological agents: a new generation of antiarrhythmic therapy. Prog Med Chem 1992; 29: 65–108

    Article  PubMed  CAS  Google Scholar 

  126. Segarra V, Lopez M, Ryder H, et al. Computer-assisted comparison of the structural and electronic dispositions of ebastine and terfenadine. Drug Saf 1999; 21Suppl. 1: 45–61

    Article  PubMed  CAS  Google Scholar 

  127. Hansch C. Quantitative structure-activity relationships and the unnamed science. Acc Chem Res 1993; 26: 147–53

    Article  CAS  Google Scholar 

  128. Podlogar BL, Ferguson DM. QSAR and CoMFA: a perspective on the practical application to drug discovery. Drug Des Discov 2000; 17: 4–12

    PubMed  CAS  Google Scholar 

  129. Mason JS, Good AC, Martin EJ. 3-D pharmacophores in drug discovery. Curr Pharm Des 2001; 7: 567–97

    Article  PubMed  CAS  Google Scholar 

  130. Finlayson K, Turnbull L, January CT, et al. [3H]Dofetilide binding to HERG transfected membranes: a potential high throughput preclinical screen. Eur J Pharmacol 2001; 430: 147–8

    Article  PubMed  CAS  Google Scholar 

  131. Eckardt L, Haverkamp W, Borggrefe M, et al. Experimental models of torsade de pointes. Cardiovasc Res 1998; 39: 178–93

    Article  PubMed  CAS  Google Scholar 

  132. Gintant GA, Limberis JT, McDermott JS, et al. The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. J Cardiovasc Pharmacol 2001; 37: 607–18

    Article  PubMed  CAS  Google Scholar 

  133. Shimizu W, Antzelevitch C. Effects of a K+ channel opener to reduce transmural dispersion of repolarization and prevent torsade de pointes in LQT1, LQT2, and LQT3 models of the long-QT syndrome. Circulation 2000; 102: 706–12

    Article  PubMed  CAS  Google Scholar 

  134. Yang T, Snyders D, Roden DM. Drug block of i kr: model systems and relevance to human arrhythmias. J Cardiovasc Pharmacol 2001; 38: 737–44

    Article  PubMed  CAS  Google Scholar 

  135. Lu HR, Remeysen P, Somers K, et al. Female gender is a risk factor for drug-induced long QT and cardiac arrhythmias in an in vivo rabbit model. J Cardiovasc Electrophysiol 2001; 12: 538–45

    Article  PubMed  CAS  Google Scholar 

  136. Volders PG, Sipido KR, Vos MA, et al. Downregulation of delayed rectifier K+ currents in dogs with chronic complete atrioventricular block and acquired torsade de pointes. Circulation 1999; 100: 2455–61

    Article  PubMed  CAS  Google Scholar 

  137. Yamamoto K, Tamura T, Imai R, et al. Acute canine model for drug-induced torsade de Pointes in drug safety evaluation-influences of anesthesia and validation with quinidine and astemizole. Toxicol Sci 2001; 60: 165–76

    Article  PubMed  CAS  Google Scholar 

  138. Van Opstal JM, Leunissen JD, Wellens HJ, et al. Azimilide and dofetilide produce similar electrophysiological and proarrhythmic effects in a canine model of torsade de pointes arrhythmias. Eur J Pharmacol 2001; 412: 67–76

    Article  PubMed  CAS  Google Scholar 

  139. Davis AS. The pre-clinical assessment of QT interval prolongation: a comparison of in vitro and in vivo methods. Hum Exp Toxicol 1998; 17: 677–80

    Article  PubMed  CAS  Google Scholar 

  140. Carlsson L. Drug-induced torsade de pointes: the perspectives of industry. Eur Heart J 2001; 3Suppl.: K114–20

    CAS  Google Scholar 

  141. Zhang S, Zhou Z, Gong Q, et al. Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. Circ Res 1999; 84: 989–98

    Article  PubMed  CAS  Google Scholar 

  142. Lacerda AE, Kramer J, Shen KZ, et al. Comparison of block among cloned cardiac potassium channels by non-antiarrhythmic drugs. Eur Heart J 2001; 3Suppl.: K23–30

    CAS  Google Scholar 

  143. Rosen MR. Isolated tissue models and proarrhythmia. Eur Heart J 2001; 3Suppl.: K64–9

    CAS  Google Scholar 

  144. Escande D. Inhibition of repolarizing ionic currents by drugs. Eur Heart J 2001; 3Suppl.: K17–22

    CAS  Google Scholar 

  145. Hammond TG, Carlsson L, Davis AS, et al. Methods of collecting and evaluating non-clinical cardiac electrophysiology data in the pharmaceutical industry: results of an international survey. Cardiovasc Res 2001; 49: 741–50

    Article  PubMed  CAS  Google Scholar 

  146. Van de Water A, Verheyen J, Xhonneux R, et al. An improved method to correct the QT interval of the electrocardiogram for changes in heart rate. J Pharmacol Methods 1989; 22: 207–17

    Article  PubMed  Google Scholar 

  147. Matsunaga T, Mitsui T, Harada T, et al. QT corrected for heart rate and relation between QT and RR intervals in beagle dogs. J Pharmacol Toxicol Methods 1997; 38: 201–9

    Article  PubMed  CAS  Google Scholar 

  148. Spence S, Soper K, Hoe CM, et al. The heart rate-corrected QT interval of conscious beagle dogs: a formula based on analysis of covariance. Toxicol Sci 1998; 45: 247–58

    Article  PubMed  CAS  Google Scholar 

  149. Classen W, Altmann B, Gretener P, et al. Differential effects of orally versus parenterally administered qinghaosu derivative artemether in dogs. Exp Toxicol Pathol 1999; 51: 507–16

    Article  PubMed  CAS  Google Scholar 

  150. Davis AS, Middleton BJ. Relationship between QT interval and heart rate in Alderley Park beagles. Vet Rec 1999; 145: 248–50

    Article  PubMed  CAS  Google Scholar 

  151. Bazett HC. An analysis of the time-relations of electrocardiograms. Heart 1920; 7: 353–70

    Google Scholar 

  152. Molnar J, Weiss JS, Rosenthal JE. The missing second: what is the correct unit for the Bazett corrected QT interval? Am J Cardiol 1995; 75: 537–8

    Article  PubMed  CAS  Google Scholar 

  153. Moss AJ. Correct the QT interval correctly: QTc should be expressed in the same unit as the QT interval. Pacing Clin Electrophysiol0 1996; 19: 881–2

    Article  PubMed  CAS  Google Scholar 

  154. Gralinski MR. The assessment of potential for QT interval prolongation with new pharmaceuticals: impact on drug development. J Pharmacol Toxicol Methods 2000; 43: 91–9

    Article  PubMed  CAS  Google Scholar 

  155. Fridericia LS. Die sytolendauer in elektrokardiogramm bei normalen menschen und bei herzkranken. Acta Med Scand 1920; 53: 469–86

    Article  Google Scholar 

  156. Matsunaga T, Mitsui T, Harada T, et al. QT corrected for heart rate and relation between QT and RR intervals in beagle dogs. J Pharmacol Toxicol Methods 1997; 38: 201–9

    Article  PubMed  CAS  Google Scholar 

  157. Matsunaga T, Harada T, Inokuma M, et al. QT prolongation and torsade de pointes induced by an antifungal agent, D0870, in conscious dogs. Toxicology 1999; 132: 187–99

    Article  PubMed  CAS  Google Scholar 

  158. Moss AJ, Zareba W, Benhorin J, et al. ISHNE Guidelines for Electrocardiographic Evaluation of Drug-Related QT Prolongation and Other Alterations in Ventricular Repolarization: Task Force Summary. A report of the task force of the International Society for Holter and Noninvasive Electrocardiology (ISHNE), Committee on Ventricular Repolarization. Ann Noninvasive Electrocardiol 2001; 6: 333–41

    Article  PubMed  CAS  Google Scholar 

  159. Malik M, Acar B, Gang Y, et al. QT dispersion does not represent electrocardiographic interlead heterogeneity of ventricular repolarization. J Cardiovasc Electrophysiol 2000; 11: 835–43

    Article  PubMed  CAS  Google Scholar 

  160. Sahu P, Lim PO, Rana BS, et al. QT dispersion in medicine: electrophysiological holy grail or fool’s gold? Q J Med 2000; 93: 425–31

    Article  CAS  Google Scholar 

  161. Lombardi F. Qt dispersion: an inappropriate measure of a good concept. Int J Cardiol 2001; 77: 148–9

    Article  Google Scholar 

  162. De Ponti F, Poluzzi E, Ferguson J, et al. Exposure to non-cardiac QT-prolonging drugs in the community: comparison among seven countries [abstract]. Pharmacoepidemiol Drug Saf 2000; 9Suppl. 1: S16

    Google Scholar 

  163. Smalley W, Shatin D, Wysowski DK, et al. Contraindicated use of cisapride: impact of food and drug administration regulatory action. JAMA 2000; 284: 3036–9

    Article  PubMed  CAS  Google Scholar 

  164. Raschetti R, Maggini M, Da Cas R, et al. Time trends in the coprescribing of cisapride and contraindicated drugs in Umbria, Italy. JAMA 2001; 285: 1840–1

    Article  PubMed  CAS  Google Scholar 

  165. Bianchi Weatherby L, Walker AM, Fife D, et al. Contraindicated medications dispensed with cisapride: temporal trends in relation to the sending of ‘Dear Doctor’ letters. Pharmacoepidemiol Drug Saf 2001; 10: 211–8

    Article  Google Scholar 

  166. McMullin ST, Reichley RM, Watson LA, et al. Impact of a web-based clinical information system on cisapride drug interactions and patient safety. Arch Intern Med 1999; 159: 2077–82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No funding was used to assist in conducting the study and the authors do not have any conflicts of interest directly relevant to the contents of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio De Ponti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Ponti, F., Poluzzi, E., Cavalli, A. et al. Safety of Non-Antiarrhythmic Drugs that Prolong the QT Interval or Induce Torsade de Pointes. Drug-Safety 25, 263–286 (2002). https://doi.org/10.2165/00002018-200225040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200225040-00004

Keywords

Navigation