Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 5, 2014

Tetracycline antibiotics and resistance mechanisms

  • Fabian Nguyen , Agata L. Starosta , Stefan Arenz , Daniel Sohmen , Alexandra Dönhöfer and Daniel N. Wilson EMAIL logo
From the journal Biological Chemistry

Abstract

The ribosome and protein synthesis are major targets within the cell for inhibition by antibiotics, such as the tetracyclines. The tetracycline family of antibiotics represent a large and diverse group of compounds, ranging from the naturally produced chlortetracycline, introduced into medical usage in the 1940s, to second and third generation semi-synthetic derivatives of tetracycline, such as doxycycline, minocycline and more recently the glycylcycline tigecycline. Here we describe the mode of interaction of tetracyclines with the ribosome and mechanism of action of this class of antibiotics to inhibit translation. Additionally, we provide an overview of the diverse mechanisms by which bacteria obtain resistance to tetracyclines, ranging from efflux, drug modification, target mutation and the employment of specialized ribosome protection proteins.


Corresponding author: Daniel N. Wilson, Gene Center and Department of Biochemistry, University of Munich, Feodor-Lynenstr. 25, D-81377 Munich, Germany; and Center for Integrated Protein Science Munich (CiPSM), University of Munich, Feodor-Lynenstr. 25, D-81377 Munich, Germany, e-mail:

Acknowledgments

This work was supported by Deutsche Forschungsgemeinschaft FOR1805 (Grant WI3285/2-1 to D.N.W.) and the European Molecular Biology Organisation (EMBO) Young Investigator Programme (D.N.W.); A.L.S. is funded by an AXA Research Fund Postdoctoral Fellowship.

References

Agwuh, K.N. and MacGowan, A. (2006). Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother. 58, 256–265.10.1093/jac/dkl224Search in Google Scholar PubMed

Backus, E.J., Duggar, B.M., and Campbell, T.H. (1954). Variation in Streptomyces aureofaciens. Ann. NY Acad. Sci. 60, 86–101.10.1111/j.1749-6632.1954.tb40000.xSearch in Google Scholar PubMed

Barden, T.C., Buckwalter, B.L., Testa, R.T., Petersen, P.J., and Lee, V.J. (1994). “Glycylcyclines”. 3. 9-Aminodoxycyclinecarboxamides. J. Med. Chem. 37, 3205–3211.10.1021/jm00046a003Search in Google Scholar PubMed

Barile, S., Devirgiliis, C., and Perozzi, G. (2012). Molecular characterization of a novel mosaic tet(S/M) gene encoding tetracycline resistance in foodborne strains of Streptococcus bovis. Microbiology 158, 2353–2362.10.1099/mic.0.058206-0Search in Google Scholar PubMed PubMed Central

Bauer, G., Berens, C., Projan, S., and Hillen, W. (2004). Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA. J. Antimicrob. Chemother. 53, 592–599.10.1093/jac/dkh125Search in Google Scholar PubMed

Ben-Shem, A., Garreau de Loubresse, N., Melnikov, S., Jenner, L., Yusupova, G., and Yusupov, M. (2011). The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334, 1524–1529.10.1126/science.1212642Search in Google Scholar PubMed

Bergeron, J., Ammirati, M., Danley, D., James, L., Norcia, M., Retsema, J., Strick, C.A., Su, W.G., Sutcliffe, J., and Wondrack, L. (1996). Glycylcyclines bind to the high-affinity tetracycline ribosomal binding site and evade Tet(M)- and Tet(O)-mediated ribosomal protection. Antimicrob. Agents Chemother. 40, 2226–2228.10.1128/AAC.40.9.2226Search in Google Scholar PubMed PubMed Central

Blackwood, R.K., Beereboom, J.J., Rennhard, H.H., von Wittenau, M.S., and Stephens, C.R. (1961). 6-methylenetetracyclines.1 I. a new class of tetracycline antibiotics. J. Am. Chem. Soc. 83, 2773–2775.10.1021/ja01473a043Search in Google Scholar

Blanchard, S.C., Gonzalez, R.L., Kim, H.D., Chu, S., and Puglisi, J.D. (2004). tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11, 1008–1014.10.1038/nsmb831Search in Google Scholar PubMed

Boothe, J.H., Kende, A.S., Fields, T.L., and Wilkinson, R.G. (1959). Total synthesis of tetracyclines. I. (±)-dedimethylamino-12a-deoxy-6-demethylanhydrochlortetracycline. J. Am. Chem. Soc. 81, 1006–1007.10.1021/ja01513a062Search in Google Scholar

Bradford, P.A., and Jones, C.H. (2012). Tetracyclines. In: Antibiotic Discovery and Development, Dougherty, T.J. and Puccim, M.J., eds. (New York: Springer), pp. 147–179.10.1007/978-1-4614-1400-1_5Search in Google Scholar

Brodersen, D.E., Clemons, W.M., Carter, A.P., Morgan-Warren, R.J., Wimberly, B.T., and Ramakrishnan, V. (2000). The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103, 1143–1154.10.1016/S0092-8674(00)00216-6Search in Google Scholar

Budkevich, T.V., El’skaya, A.V., and Nierhaus, K.H. (2008). Features of 80S mammalian ribosome and its subunits. Nucleic Acids Res. 36, 4736–4744.10.1093/nar/gkn424Search in Google Scholar

Burdett, V. (1991). Purification and characterization of Tet(M), a protein that renders ribosomes resistant to tetracycline. J. Biol. Chem. 266, 2872–2877.10.1016/S0021-9258(18)49928-0Search in Google Scholar

Burdett, V. (1993). transfer-RNA modification activity is necessary for Tet(M)-mediated tetracycline resistance. J. Bacteriol. 175, 7209–7215.10.1128/jb.175.22.7209-7215.1993Search in Google Scholar PubMed PubMed Central

Burdett, V. (1996). Tet(M)-promoted release of tetracycline from ribosomes is GTP dependent. J. Bacteriol. 178, 3246–3251.10.1128/jb.178.11.3246-3251.1996Search in Google Scholar PubMed PubMed Central

Caryl, J.A., Cox, G., Trimble, S., and O’Neill, A.J. (2012). “tet(U)” is not a tetracycline resistance determinant. Antimicrob. Agents Chemother. 56, 3378–3379.10.1128/AAC.05957-11Search in Google Scholar PubMed PubMed Central

Chopra, I. and Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 232–260.10.1128/MMBR.65.2.232-260.2001Search in Google Scholar PubMed PubMed Central

Connell, S.R., Trieber, C.A., Stelzl, U., Einfeldt, E., Taylor, D.E., and Nierhaus, K.H. (2002). The tetracycline resistance protein Tet(O) perturbs the conformation of the ribosomal decoding centre. Mol. Microbiol. 45, 1463–1472.10.1046/j.1365-2958.2002.03115.xSearch in Google Scholar PubMed

Connell, S.R., Tracz, D.M., Nierhaus, K.H., and Taylor, D.E. (2003a). Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob. Agents Chemother. 47, 3675–3681.10.1128/AAC.47.12.3675-3681.2003Search in Google Scholar PubMed PubMed Central

Connell, S.R., Trieber, C.A., Dinos, G.P., Einfeldt, E., Taylor, D.E., and Nierhaus, K.H. (2003b). Mechanism of Tet(O)-mediated tetracycline resistance. EMBO J. 22, 945–953.10.1093/emboj/cdg093Search in Google Scholar PubMed PubMed Central

Conover, L.H., Moreland, W.T., English, A.R., Stephens, C.R., and Pilgrim, F.J. (1953). Terramycin. Xi. Tetracycline. J. Am. Chem. Soc. 75, 4622–4623.10.1021/ja01114a537Search in Google Scholar

Dailidiene, D., Bertoli, M.T., Miciuleviciene, J., Mukhopadhyay, A.K., Dailide, G., Pascasio, M.A., Kupcinskas, L., and Berg, D.E. (2002). Emergence of tetracycline resistance in Helicobacter pylori: multiple mutational changes in 16S ribosomal DNA and other genetic loci. Antimicrob. Agents Chemother. 46, 3940–3946.10.1128/AAC.46.12.3940-3946.2002Search in Google Scholar PubMed PubMed Central

Dantley, K., Dannelly, H., and Burdett, V. (1998). Binding interaction between Tet(M) and the ribosome: requirements for binding. J. Bacteriol. 180, 4089–4092.10.1128/JB.180.16.4089-4092.1998Search in Google Scholar PubMed PubMed Central

Dönhöfer, A., Franckenberg, S., Wickles, S., Berninghausen, O., Beckmann, R., and Wilson, D.N. (2012). Structural basis for TetM-mediated tetracycline resistance. Proc. Natl. Acad. Sci. USA 109, 16900–16905.10.1073/pnas.1208037109Search in Google Scholar PubMed PubMed Central

Doyle, D., McDowall, K.J., Butler, M.J., and Hunter, I.S. (1991). Characterization of an oxytetracycline-resistance gene, otrA, of Streptomyces rimosus. Mol. Microbiol. 5, 2923–2933.10.1111/j.1365-2958.1991.tb01852.xSearch in Google Scholar PubMed

Draper, M.P., Weir, S., Macone, A., Donatelli, J., Trieber, C.A., Tanaka, S.K., and Levy, S.B. (2013). The mechanism of action of the novel aminomethylcycline antibiotic omadacycline. Antimicrob. Agents Chemother. Sep 16. [Epub ahead of print] doi: 10.1128/AAC.01066-13.10.1128/AAC.01066-13Search in Google Scholar PubMed PubMed Central

Duggar, B.M. (1948). Aureomycin; a product of the continuing search for new antibiotics. Ann. NY Acad. Sci. 51, 177–181.10.1111/j.1749-6632.1948.tb27262.xSearch in Google Scholar PubMed

Esberg, B. and Bjork, G.R. (1995). The methylthio group (ms(2)) of N-6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms(2)io(6)A) present next to the anticodon contributes to the decoding efficiency of the tRNA. J. Bacteriol. 177, 1967–1975.10.1128/jb.177.8.1967-1975.1995Search in Google Scholar PubMed PubMed Central

Finlay, A.C., Hobby, G.L., P’an, S.Y., Regna, P.P., Routien, J.B., Seeley, D.B., Shull, G.M., Sobin, B.A., Solomons, I.A., Vinson, J.W., et al. (1950). Terramycin, a new antibiotic. Science 111, 85.Search in Google Scholar

Gale, E.F., Cundliffe, E., Reynolds, P.E., Richmond, M.H., and Waring, M.J. (1981). Antibiotic inhibitors of ribosome function. In: The Molecular Basis of Antibiotic Action (Bristol, UK: John Wiley and Sons), pp. 278–379.Search in Google Scholar

Gao, Y.G., Selmer, M., Dunham, C.M., Weixlbaumer, A., Kelley, A.C., and Ramakrishnan, V. (2009). The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699.10.1126/science.1179709Search in Google Scholar PubMed PubMed Central

Geggier, P., Dave, R., Feldman, M.B., Terry, D.S., Altman, R.B., Munro, J.B., and Blanchard, S.C. (2010). Conformational sampling of aminoacyl-tRNA during selection on the bacterial ribosome. J. Mol. Biol. 399, 576–595.10.1016/j.jmb.2010.04.038Search in Google Scholar PubMed PubMed Central

Gerrits, M.M., de Zoete, M.R., Arents, N.L., Kuipers, E.J., and Kusters, J.G. (2002). 16S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 46, 2996–3000.10.1128/AAC.46.9.2996-3000.2002Search in Google Scholar PubMed PubMed Central

Gerrits, M.M., Berning, M., Van Vliet, A.H., Kuipers, E.J., and Kusters, J.G. (2003). Effects of 16S rRNA gene mutations on tetracycline resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 47, 2984–2986.10.1128/AAC.47.9.2984-2986.2003Search in Google Scholar PubMed PubMed Central

Grewal, J., Manavathu, E.K., and Taylor, D.E. (1993). Effect of mutational alteration of Asn-128 in the putative GTP-binding domain of tetracycline resistance determinant Tet(O) from Campylobacter jejuni. Antimicrob. Agents Chemother. 37, 2645–2649.10.1128/AAC.37.12.2645Search in Google Scholar PubMed PubMed Central

Grossman, T.H., Starosta, A.L., Fyfe, C., O’Brien, W., Rothstein, D.M., Mikolajka, A., Wilson, D.N., and Sutcliffe, J.A. (2012). Target- and resistance-based mechanistic studies with TP-434, a novel fluorocycline antibiotic. Antimicrob. Agents Chemother. 56, 2559–2564.10.1128/AAC.06187-11Search in Google Scholar PubMed PubMed Central

Guay, G.G., Tuckman, M., and Rothstein, D.M. (1994). Mutations in the tetA(B) gene that cause a change in substrate specificity of the tetracycline efflux pump. Antimicrob. Agents Chemother. 38, 857–860.10.1128/AAC.38.4.857Search in Google Scholar PubMed PubMed Central

Guillaume, G., Ledent, V., Moens, W., and Collard, J.M. (2004). Phylogeny of efflux-mediated tetracycline resistance genes and related proteins revisited. Microb. Drug Resist. 10, 11–26.10.1089/107662904323047754Search in Google Scholar PubMed

Hillen, W. and Berens, C. (1994). Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu. Rev. Microbiol. 48, 345–369.10.1146/annurev.mi.48.100194.002021Search in Google Scholar PubMed

Hinrichs, W., Kisker, C., Duvel, M., Muller, A., Tovar, K., Hillen, W., and Saenger, W. (1994). Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 264, 418–420.10.1126/science.8153629Search in Google Scholar PubMed

Hochstein, F.A., Stephens, C.R., Conover, L.H., Regna, P.P., Pasternack, R., Gordon, P.N., Pilgrim, F.J., Brunings, K.J., and Woodward, R.B. (1953). The structure of terramycin1,2. J. Am. Chem. Soc. 75, 5455–5475.10.1021/ja01118a001Search in Google Scholar

Jenner, L., Starosta, A.L., Terry, D.S., Mikolajka, A., Filonava, L., Yusupov, M., Blanchard, S.C., Wilson, D.N., and Yusupova, G. (2013). Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis. Proc. Natl. Acad. Sci. USA 110, 3812–3816.10.1073/pnas.1216691110Search in Google Scholar PubMed PubMed Central

Jiang, D., Zhao, Y., Wang, X., Fan, J., Heng, J., Liu, X., Feng, W., Kang, X., Huang, B., Liu, J., et al. (2013). Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A. Proc. Natl. Acad. Sci. USA 110, 14664–14669.10.1073/pnas.1308127110Search in Google Scholar PubMed PubMed Central

Kisker, C., Hinrichs, W., Tovar, K., Hillen, W., and Saenger, W. (1995). The complex formed between Tet repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance. J. Mol. Biol. 247, 260–280.10.1006/jmbi.1994.0138Search in Google Scholar PubMed

Li, W., Atkinson, G.C., Thakor, N.S., Allas, U., Lu, C.C., Chan, K.Y., Tenson, T., Schulten, K., Wilson, K.S., Hauryliuk, V., et al. (2013). Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nat. Commun. 4, 1477.10.1038/ncomms2470Search in Google Scholar PubMed PubMed Central

Martell, M.J., Jr. and Boothe, J.H. (1967). The 6-deoxytetracyclines. VII. Alkylated aminotetracyclines possessing unique antibacterial activity. J. Med. Chem. 10, 44–46.10.1021/jm00313a009Search in Google Scholar PubMed

McCormick, J.R.D., Sjolander, N.O., Hirsch, U., Jensen, E.R., and Doerschuk, A.P. (1957). A new family of antibiotics: the demethyltetracyclines. J. Am. Chem. Soc. 79, 4561–4563.10.1021/ja01573a089Search in Google Scholar

McCormick, J.R.D., Hirsch, U., Sjolander, N.O., and Doerschuk, A.P. (1960). Cosynthesis of tetracyclines by pairs of Streptomyces aureofaciens mutants. J. Am. Chem. Soc. 82, 5006–5007.10.1021/ja01503a066Search in Google Scholar

Mikolajka, A., Liu, H., Chen, Y., Starosta, A.L., Marquez, V., Ivanova, M., Cooperman, B.S., and Wilson, D.N. (2011). Differential effects of thiopeptide and orthosomycin antibiotics on translational GTPases. Chem. Biol. 18, 589–600.10.1016/j.chembiol.2011.03.010Search in Google Scholar PubMed PubMed Central

Moazed, D. and Noller, H.F. (1987). Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327, 389–394.10.1038/327389a0Search in Google Scholar PubMed

Moore, I.F., Hughes, D.W., and Wright, G.D. (2005). Tigecycline is modified by the flavin-dependent monooxygenase TetX. Biochemistry 44, 11829–11835.10.1021/bi0506066Search in Google Scholar PubMed

Nelson, M.L. (2001). The chemistry and cellular biology of the tetracyclines. In: Tetracyclines in Biology, Chemistry and Medicine, M.L. Nelson, W. Hillen, and R.A. Greenwald, eds. (Switzerland: Birkhäuser Verlag), pp. 3–63.10.1007/978-3-0348-8306-1_1Search in Google Scholar

Nelson, M.L. and Levy, S.B. (2011). The history of the tetracyclines. Ann. N.Y. Acad. Sci. 1241, 17–32.10.1111/j.1749-6632.2011.06354.xSearch in Google Scholar PubMed

Nelson, M.L., Ismail, M.Y., McIntyre, L., Bhatia, B., Viski, P., Hawkins, P., Rennie, G., Andorsky, D., Messersmith, D., Stapleton, K., et al. (2003). Versatile and facile synthesis of diverse semisynthetic tetracycline derivatives via Pd-catalyzed reactions. J. Org. Chem. 68, 5838–5851.10.1021/jo030047dSearch in Google Scholar PubMed

Nonaka, L., Connell, S.R., and Taylor, D.E. (2005). 16S rRNA mutations that confer tetracycline resistance in Helicobacter pylori decrease drug binding in Escherichia coli ribosomes. J. Bacteriol. 187, 3708–3712.10.1128/JB.187.11.3708-3712.2005Search in Google Scholar PubMed PubMed Central

Olson, M.W., Ruzin, A., Feyfant, E., Rush, T.S., 3rd, O’Connell, J., and Bradford, P.A. (2006). Functional, biophysical, and structural bases for antibacterial activity of tigecycline. Antimicrob. Agents Chemother. 50, 2156–2166.10.1128/AAC.01499-05Search in Google Scholar PubMed PubMed Central

Orth, P., Schnappinger, D., Sum, P.E., Ellestad, G.A., Hillen, W., Saenger, W., and Hinrichs, W. (1999). Crystal structure of the tet repressor in complex with a novel tetracycline, 9-(N,N-dimethylglycylamido)- 6-demethyl-6-deoxy-tetracycline. J. Mol. Biol. 285, 455–461.10.1006/jmbi.1998.2290Search in Google Scholar PubMed

Orth, P., Schnappinger, D., Hillen, W., Saenger, W., and Hinrichs, W. (2000). Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat. Struct. Biol. 7, 215–219.10.1038/73324Search in Google Scholar PubMed

Perlman, D., Heuser, L.J., Dutcher, J.D., Barrett, J.M., and Boska, J.A. (1960). Biosynthesis of tetracycline by 5-hydroxy-tetracycline-producing cultures of Streptomyces rimosus. J. Bacteriol. 80, 419–420.10.1128/jb.80.3.419-420.1960Search in Google Scholar PubMed PubMed Central

Petersen, P.J., Jacobus, N.V., Weiss, W.J., Sum, P.E., and Testa, R.T. (1999). In vitro and in vivo antibacterial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936). Antimicrob. Agents Chemother. 43, 738–744.10.1128/AAC.43.4.738Search in Google Scholar PubMed PubMed Central

Piddock, L.J. (2006). Multidrug-resistance efflux pumps-not just for resistance. Nat. Rev. Microbiol. 4, 629–636.10.1038/nrmicro1464Search in Google Scholar PubMed

Pioletti, M., Schlunzen, F., Harms, J., Zarivach, R., Gluhmann, M., Avila, H., Bashan, A., Bartels, H., Auerbach, T., Jacobi, C., et al. (2001). Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 20, 1829–1839.10.1093/emboj/20.8.1829Search in Google Scholar

Ridenhour, M.B., Fletcher, H.M., Mortensen, J.E., and Daneo-Moore, L. (1996). A novel tetracycline-resistant determinant, tet(U), is encoded on the plasmid pKq10 in Enterococcus faecium. Plasmid 35, 71–80.10.1006/plas.1996.0009Search in Google Scholar

Roberts, M.C. (1994). Epidemiology of tetracycline-resistance determinants. Trends Microbiol. 2, 353–357.10.1016/0966-842X(94)90610-6Search in Google Scholar

Roberts, M.C. (1996). Tetracycline resistance determinants: Mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 19, 1–24.10.1111/j.1574-6976.1996.tb00251.xSearch in Google Scholar

Ross, J.I., Eady, E.A., Cove, J.H., and Cunliffe, W.J. (1998). 16S rRNA mutation associated with tetracycline resistance in a Gram-positive bacterium. Antimicrob. Agents Chemother. 42, 1702–1705.10.1128/AAC.42.7.1702Search in Google Scholar

Saenger, W., Orth, P., Kisker, C., Hillen, W., and Hinrichs, W. (2000). The tetracycline repressor-a paradigm for a biological switch. Angew Chem. Int. Ed. Engl. 39, 2042–2052.10.1002/1521-3773(20000616)39:12<2042::AID-ANIE2042>3.0.CO;2-CSearch in Google Scholar

Schmeing, T.M., Voorhees, R.M., Kelley, A.C., Gao, Y.G., Murphy, F.V.T., Weir, J.R., and Ramakrishnan, V. (2009). The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326, 688–694.10.1126/science.1179700Search in Google Scholar

Söding, J., Biegert, A., and Lupas, A.N. (2005). The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248.10.1093/nar/gki408Search in Google Scholar

Sohmen, D., Harms, J.M., Schlunzen, F., and Wilson, D.N. (2009a). Enhanced SnapShot: Antibiotic inhibition of protein synthesis II. Cell 139, 212–212 e211.10.1016/j.cell.2009.08.009Search in Google Scholar

Sohmen, D., Harms, J.M., Schlunzen, F., and Wilson, D.N. (2009b). SnapShot: antibiotic inhibition of protein synthesis I. Cell 138, 1248 e1241.10.1016/j.cell.2009.08.001Search in Google Scholar

Spahn, C.M., Blaha, G., Agrawal, R.K., Penczek, P., Grassucci, R.A., Trieber, C.A., Connell, S.R., Taylor, D.E., Nierhaus, K.H., and Frank, J. (2001). Localization of the ribosomal protection protein Tet(O) on the ribosome and the mechanism of tetracycline resistance. Mol. Cell 7, 1037–1045.10.1016/S1097-2765(01)00238-6Search in Google Scholar

Speer, B.S., Bedzyk, L., and Salyers, A.A. (1991). Evidence that a novel tetracycline resistance gene found on two Bacteroides transposons encodes an NADP-requiring oxidoreductase. J. Bacteriol. 173, 176–183.10.1128/jb.173.1.176-183.1991Search in Google Scholar PubMed PubMed Central

Starosta, A.L., Qin, H., Mikolajka, A., Leung, G.Y., Schwinghammer, K., Nicolaou, K.C., Chen, D.Y., Cooperman, B.S., and Wilson, D.N. (2009). Identification of distinct thiopeptide-antibiotic precursor lead compounds using translation machinery assays. Chem Biol 16, 1087–1096.10.1016/j.chembiol.2009.09.016Search in Google Scholar PubMed PubMed Central

Stephens, C.R., Conover, L.H., Hochstein, F.A., Regna, P.P., Pilgrim, F.J., Brunings, K.J., and Woodward, R.B. (1952). Terramycin. VIII. Structure of aureomycin and terramycin. J. Am. Chem. Soc. 74, 4976–4977.10.1021/ja01139a533Search in Google Scholar

Stephens, C.R., Conover, L.H., Pasternack, R., Hochstein, F.A., Moreland, W.T., Regna, P.P., Pilgrim, F.J., Brunings, K.J., and Woodward, R.B. (1954). The structure of Aureomycin1. J. Am. Chem. Soc. 76, 3568–3575.10.1021/ja01642a064Search in Google Scholar

Stephens, C.R., Beereboom, J.J., Rennhard, H.H., Gordon, P.N., Murai, K., Blackwood, R.K., and von Wittenau, M.S. (1963). 6-Deoxytetracyclines. IV.1,2 Preparation, C-6 Stereochemistry, and Reactions. J. Am. Chem. Soc. 85, 2643–2652.10.1021/ja00900a027Search in Google Scholar

Sum, P.E., Lee, V.J., Testa, R.T., Hlavka, J.J., Ellestad, G.A., Bloom, J.D., Gluzman, Y., and Tally, F.P. (1994). Glycylcyclines. 1. A new generation of potent antibacterial agents through modification of 9-aminotetracyclines. J. Med. Chem. 37, 184–188.10.1021/jm00027a023Search in Google Scholar PubMed

Sun, C., Wang, Q., Brubaker, J.D., Wright, P.M., Lerner, C.D., Noson, K., Charest, M., Siegel, D.R., Wang, Y.M., and Myers, A.G. (2008). A robust platform for the synthesis of new tetracycline antibiotics. J. Am. Chem. Soc. 130, 17913–17927.10.1021/ja806629eSearch in Google Scholar PubMed PubMed Central

Sun, C., Hunt, D.K., Clark, R.B., Lofland, D., O’Brien, W.J., Plamondon, L., and Xiao, X.Y. (2010). Synthesis and antibacterial activity of pentacyclines: a novel class of tetracycline analogs. J. Med. Chem. 54, 3704–3731.10.1021/jm1015395Search in Google Scholar PubMed PubMed Central

Tally, F.T., Ellestad, G.A., and Testa, R.T. (1995). Glycylcyclines: a new generation of tetracyclines. J. Antimicrob. Chemother. 35, 449–452.10.1093/jac/35.4.449Search in Google Scholar PubMed

Taylor, D.E., Jerome, L.J., Grewal, J., and Chang, N. (1995). Tet(O), a protein that mediates ribosomal protection to tetracycline, binds, and hydrolyses GTP. Can. J. Microbiol. 41, 965–970.10.1139/m95-134Search in Google Scholar

Taylor, D.E., Trieber, C.A., Trescher, G., and Bekkering, M. (1998). Host mutations (miaA and rpsL) reduce tetracycline resistance mediated by Tet(O) and Tet(M). Antimicrob. Agents Chemother. 42, 59–64.10.1128/AAC.42.1.59Search in Google Scholar

Testa, R.T., Petersen, P.J., Jacobus, N.V., Sum, P.E., Lee, V.J., and Tally, F.P. (1993). In vitro and in vivo antibacterial activities of the glycylcyclines, a new class of semisynthetic tetracyclines. Antimicrob. Agents Chemother. 37, 2270–2277.10.1128/AAC.37.11.2270Search in Google Scholar

Thaker, M., Spanogiannopoulos, P., and Wright, G.D. (2010). The tetracycline resistome. Cell. Mol. Life Sci. 67, 419–431.10.1007/s00018-009-0172-6Search in Google Scholar

Trieber, C.A. and Taylor, D.E. (2002). Mutations in the 16S rRNA genes of Helicobacter pylori mediate resistance to tetracycline. J. Bacteriol. 184, 2131–2140.10.1128/JB.184.8.2131-2140.2002Search in Google Scholar

Trieber, C.A., Burkhardt, N., Nierhaus, K.H., and Taylor, D.E. (1998). Ribosomal protection from tetracycline mediated by Tet(O) interaction with ribosomes is GTP-dependent. Biol. Chem. 379, 847–855.10.1515/bchm.1998.379.7.847Search in Google Scholar

Vacher, J., Grosjean, H., Houssier, C., and Buckingham, R.H. (1984). The effect of point mutations affecting Escherichia coli tryptophan tRNA on anticodon-anticodon interactions and on UGA suppression. J. Mol. Biol. 177, 329–342.10.1016/0022-2836(84)90460-1Search in Google Scholar

Volkers, G., Palm, G.J., Weiss, M.S., Wright, G.D., and Hinrichs, W. (2011). Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. FEBS Lett. 585, 1061–1066.10.1016/j.febslet.2011.03.012Search in Google Scholar PubMed

Volkers, G., Damas, J.M., Palm, G.J., Panjikar, S., Soares, C.M., and Hinrichs, W. (2013). Putative dioxygen-binding sites and recognition of tigecycline and minocycline in the tetracycline-degrading monooxygenase TetX. Acta Crystallogr. D Biol. Crystallogr. 69, 1758–1767.10.1107/S0907444913013802Search in Google Scholar PubMed

Voorhees, R.M., Weixlbaumer, A., Loakes, D., Kelley, A.C., and Ramakrishnan, V. (2009). Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat. Struct. Mol. Biol. 16, 528–533.10.1038/nsmb.1577Search in Google Scholar PubMed PubMed Central

White, J.P. and Cantor, C.R. (1971). Role of magnesium in the binding of tetracycline to Escherichia coli ribosomes. J. Mol. Biol. 58, 397–400.10.1016/0022-2836(71)90255-5Search in Google Scholar

Wilson, D.N. (2009). The A-Z of bacterial translation inhibitors. Crit. Rev. Biochem. Mol. Biol. 44, 393–433.10.3109/10409230903307311Search in Google Scholar PubMed

Wilson, D.N. (2013). Ribosome-targeting antibiotics and bacterial resistance mechanisms. Nat. Rev. Microbiol., 12, 35–48.10.1038/nrmicro3155Search in Google Scholar PubMed

Yang, W., Moore, I.F., Koteva, K.P., Bareich, D.C., Hughes, D.W., and Wright, G.D. (2004). TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J. Biol. Chem. 279, 52346–52352.10.1074/jbc.M409573200Search in Google Scholar PubMed

Received: 2013-12-6
Accepted: 2014-1-30
Published Online: 2014-2-5
Published in Print: 2014-5-1

©2014 by Walter de Gruyter Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2013-0292/html
Scroll to top button