Skip to main content

Advertisement

Log in

Protein Binding of Antimicrobials: Methods for Quantification and for Investigation of its Impact on Bacterial Killing

  • Review Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Plasma protein binding of antimicrobial agents is considered to be a key characteristic of antibiotics as it affects both their pharmacokinetics and pharmacodynamics. However, up to the present, no standard methods for measuring protein binding or for quantification of the influence of protein binding on antimicrobial activity exist. This short-coming has previously led to conflicting results on antibacterial activity of highly protein-bound antibiotics. The present review, therefore, set out to summarize (1) methods for quantification of protein binding, (2) microbiological growth media used for determination of the impact of protein binding on antimicrobial activity of antibiotics, and (3) different pharmacodynamic in vitro studies that are used in this context. The advantages and disadvantages of a wide range of different approaches are discussed and compared. The urgent call for international standardization by microbiological societies and laboratories may be considered as a logical consequence of the presented data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Oravcova, B. Bohs, and W. Lindner. Drug–protein binding sites. New trends in analytical and experimental methodology. J. Chromatogr. B Biomed. Appl. 677(1):1–28 (1996) Feb 23.

    Article  PubMed  Google Scholar 

  2. J. D. Wright, F. D. Boudinot, and M. R. Ujhelyi. Measurement and analysis of unbound drug concentrations. Clin Pharmacokinet. 30(6):445–462 (1996) Jun.

    Article  PubMed  CAS  Google Scholar 

  3. E. Bergogne-Berezin. Clinical role of protein binding of quinolones. Clin Pharmacokinet. 41(10):741–750 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. J. Turnidge. Pharmacokinetics and pharmacodynamics of fluoroquinolones. Drugs. 58(Suppl 2):29–36 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. C. M. Kunin. Clinical pharmacology of the new penicillins. 1. The importance of serum protein binding in determining antimicrobial activity and concentration in serum. Clin. Pharmacol. Ther. 7(2):166–179 (1966) Mar–Apr.

    PubMed  CAS  Google Scholar 

  6. C. M. Kunin, W. A. Craig, M. Kornguth, and R. Monson. Influence of binding on the pharmacologic activity of antibiotics. Ann. N Y Acad. Sci. 226:214–224 (1973) Nov 26.

    Article  PubMed  CAS  Google Scholar 

  7. R. Cha, and M. J. Rybak. Influence of protein binding under controlled conditions on the bactericidal activity of daptomycin in an in vitro pharmacodynamic model. J. Antimicrob. Chemother. 54(1):259–262 (2004) Jul.

    Article  PubMed  CAS  Google Scholar 

  8. E. Rubinstein, L. Diamantstein G. Yoseph et al. The effect of albumin, globulin, pus and dead bacteria in aerobic and anaerobic conditions on the antibacterial activity of moxifloxacin, trovafloxacin and ciprofloxacin against Streptococcus pneumoniae, Staphylococcus aureus and Escherichia coli. Clin. Microbiol. Infect. 6(12):678–681 (2000) Dec.

    Article  PubMed  CAS  Google Scholar 

  9. M. Zeitlinger, R. Sauermann, M. Fille, J. Hausdorfer, I. Leitner, and M. Muller. Plasma protein binding of fluoroquinolones affects antimicrobial activity. J. Antimicrob. Chemother. 61(3):561–567 (2008) Mar.

    Article  PubMed  CAS  Google Scholar 

  10. T. Bergan, A. Engeset, and W. Olszewski. Does serum protein binding inhibit tissue penetration of antibiotics? Rev. Infect. Dis. 9(4):713–718 (1987) Jul–Aug.

    PubMed  CAS  Google Scholar 

  11. W. A. Craig, and S. C. Ebert. Protein binding and its significance in antibacterial therapy. Infect. Dis. Clin. North Am. 3(3):407–414 (1989) Sep.

    PubMed  CAS  Google Scholar 

  12. W. A. Craig, and P. G. Welling. Protein binding of antimicrobials: clinical pharmacokinetic and therapeutic implications. Clin Pharmacokinet. 2(4):252–268 (1977) Jul–Aug.

    Article  PubMed  CAS  Google Scholar 

  13. L. R. Peterson, and D. N. Gerding. Influence of protein binding of antibiotics on serum pharmacokinetics and extravascular penetration: clinically useful concepts. Rev. Infect. Dis. 2(3):340–348 (1980) May–Jun.

    PubMed  CAS  Google Scholar 

  14. R. T. Scheife. Protein binding: what does it mean? DICP. 23(7–8 Suppl):S27–31 (1989) Jul–Aug.

    PubMed  CAS  Google Scholar 

  15. W. A. Craig, and C. M. Kunin. Significance of serum protein and tissue binding of antimicrobial agents. Annu. Rev. Med. 27:287–300 (1976).

    Article  PubMed  CAS  Google Scholar 

  16. D. J. Merrikin, J. Briant, and G. N. Rolinson. Effect of protein binding on antibiotic activity in vivo. J Antimicrob Chemother. 11(3):233–238 (1983) Mar.

    Article  PubMed  CAS  Google Scholar 

  17. R. Wise. The clinical relevance of protein binding and tissue concentrations in antimicrobial therapy. Clin. Pharmacokinet. 11(6):470–482 (1986) Nov–Dec.

    Article  PubMed  CAS  Google Scholar 

  18. R. Wise. Protein binding of beta-lactams: the effects on activity and pharmacology particularly tissue penetration. II. Studies in man. J. Antimicrob. Chemother. 12(2):105–118 (1983) Aug.

    Article  PubMed  CAS  Google Scholar 

  19. W. E. Lindup, and M. C. Orme. Clinical pharmacology: plasma protein binding of drugs. Br. Med. J. (Clin Res Ed). 282(6259):212–214 (1981) Jan 17.

    Article  CAS  Google Scholar 

  20. Y. Yano, T. Oguma, H. Nagata, and S. Sasaki. Application of logistic growth model to pharmacodynamic analysis of in vitro bactericidal kinetics. J. Pharm. Sci. 87(10):1177–1183 (1998) Oct.

    Article  PubMed  CAS  Google Scholar 

  21. O. Burkhardt, M. Brunner, S. Schmidt, M. Grant, Y. Tang, and H. Derendorf. Penetration of ertapenem into skeletal muscle and subcutaneous adipose tissue in healthy volunteers measured by in vivo microdialysis. J. Antimicrob. Chemother. 58(3):632–636 (2006) Sep.

    Article  PubMed  CAS  Google Scholar 

  22. T. R. Perry, and J. J. Schentag. Clinical use of ceftriaxone: a pharmacokinetic–pharmacodynamic perspective on the impact of minimum inhibitory concentration and serum protein binding. Clin. Pharmacokinet. 40(9):685–694 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. R. Mehrotra, R. De Gaudio, and M. Palazzo. Antibiotic pharmacokinetic and pharmacodynamic considerations in critical illness. Intensive Care Med. 30(12):2145–2156 (2004) Dec.

    Article  PubMed  Google Scholar 

  24. L. Z. Benet, and B. A. Hoener. Changes in plasma protein binding have little clinical relevance. Clin. Pharmacol. Ther. 71(3):115–121 (2002) Mar.

    Article  PubMed  CAS  Google Scholar 

  25. A. Dasgupta. Clinical utility of free drug monitoring. Clin. Chem. Lab. Med. 40(10):986–993 (2002) Oct.

    Article  PubMed  CAS  Google Scholar 

  26. H. Kurz, H. Trunk, and B. Weitz. Evaluation of methods to determine protein-binding of drugs. Equilibrium dialysis, ultrafiltration, ultracentrifugation, gel filtration. Arzneimittelforschung. 27(7):1373–1380 (1977) Jul.

    PubMed  CAS  Google Scholar 

  27. Z. J. Lin, D. Musiano, A. Abbot, and L. Shum. In vitro plasma protein binding determination of flunarizine using equilibrium dialysis and liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 37(4):757–762 (2005) Apr 1.

    Article  PubMed  CAS  Google Scholar 

  28. W. Scholtan. [Methods of determination and theoretical principles of the serum protein binding of drugs (author’s transl)]. Arzneimittelforschung. 28(7):1037–1047 (1978).

    PubMed  CAS  Google Scholar 

  29. B. Sebille. Methods of drug protein binding determinations. Fundam. Clin. Pharmacol. 4(Suppl 2):151s–161s (1990).

    PubMed  Google Scholar 

  30. H. Wan, and M. Rehngren. High-throughput screening of protein binding by equilibrium dialysis combined with liquid chromatography and mass spectrometry. J. Chromatogr. A. 1102(1–2):125–134 (2006) Jan 13.

    Article  PubMed  CAS  Google Scholar 

  31. C. Joukhadar, and M. Muller. Microdialysis: current applications in clinical pharmacokinetic studies and its potential role in the future. Clin. Pharmacokinet. 44(9):895–913 (2005).

    Article  PubMed  CAS  Google Scholar 

  32. A. Le Quellec, S. Dupin, A. E. Tufenkji, P. Genissel, and G. Houin. Microdialysis: an alternative for in vitro and in vivo protein binding studies. Pharm. Res. 11(6):835–838 (1994) Jun.

    Article  PubMed  Google Scholar 

  33. M. Stahl, R. Bouw, A. Jackson, and V. Pay. Human microdialysis. Curr. Pharm. Biotechnol. 3(2):165–178 (2002) Jun.

    Article  PubMed  CAS  Google Scholar 

  34. R. K. Verbeeck. Blood microdialysis in pharmacokinetic and drug metabolism studies. Adv. Drug Deliv. Rev. 45(2–3):217–228 (2000) Dec 15.

    Article  PubMed  CAS  Google Scholar 

  35. A. Heinze, and U. Holzgrabe. Determination of the extent of protein binding of antibiotics by means of an automated continuous ultrafiltration method. In.t J. Pharm. 311(1–2):108–112 (2006) Mar 27.

    CAS  Google Scholar 

  36. J. B. Whitlam, and K. F. Brown. Ultrafiltration in serum protein binding determinations. J. Pharm. Sci. 70(2):146–150 (1981) Feb.

    Article  PubMed  CAS  Google Scholar 

  37. Y. Matsushita, and I. Moriguchi. Measurement of protein binding by ultracentrifugation. Chem. Pharm. Bull. (Tokyo). 33(7):2948–2955 (1985) Jul.

    CAS  Google Scholar 

  38. D. S. Hage. Chromatographic and electrophoretic studies of protein binding to chiral solutes. J. Chromatogr. A. 906(1–2):459–481 (2001) Jan 12.

    Article  PubMed  CAS  Google Scholar 

  39. B. H. Ackerman, E. H. Taylor, K. M. Olsen, W. Abdel-Malak, and A. A. Pappas. Vancomycin serum protein binding determination by ultrafiltration. Drug Intell. Clin. Pharm. 22(4):300–303 (1988) Apr.

    PubMed  CAS  Google Scholar 

  40. I. Gastearena, M. C. Dios-Vieitez, M. M. Terraz, S. Domingo, and D. Fos. Determination of the alpha1-acid glycoprotein binding of azithromycin in vitro by equilibrium dialysis. J. Chemother. 7(Suppl 4):26–28 (1995) Nov.

    PubMed  Google Scholar 

  41. J. E. Hutchins, K. Tyczkowska, and A. L. Aronson. Determination of ampicillin in serum by using simple ultrafiltration technique and liquid chromatographic analysis. J. Assoc. Off. Anal. Chem. 69(5):757–759 (1986) Sep–Oct.

    PubMed  CAS  Google Scholar 

  42. H. Teraoka, and K. H. Nierhaus. Measurement of the binding of antibiotics to ribosomal particles by means of equilibrium dialysis. Methods Enzymol. 59:862–866 (1979).

    Article  PubMed  CAS  Google Scholar 

  43. T. H. Tsai, F. C. Cheng, L. C. Hung, and C. F. Chen. Determination of unbound ceftriaxone in rat blood by on-line microdialysis and microbore liquid chromatography. Int. J. Pharm. 193(1):21–26 (1999) Dec 20.

    Article  PubMed  CAS  Google Scholar 

  44. S. Schmidt, K. Rock M. Sahre et al. The effect of protein binding on the pharmacological activity of highly bound antibiotics. Antimicrob. Agents Chemother. 52(11):3994–4000 (2008).

    Article  PubMed  CAS  Google Scholar 

  45. F. Traunmuller, M. Zeitlinger, P. Zeleny, M. Muller, and C. Joukhadar. Pharmacokinetics of single- and multiple-dose oral clarithromycin in soft tissues determined by microdialysis. Antimicrob. Agents Chemother. 51(9):3185–3189 (2007) Sep.

    Article  PubMed  CAS  Google Scholar 

  46. S. M. Palmer, S. L. Kang, D. M. Cappelletty, and M. J. Rybak. Bactericidal killing activities of cefepime, ceftazidime, cefotaxime, and ceftriaxone against Staphylococcus aureus and beta-lactamase-producing strains of Enterobacter aerogenes and Klebsiella pneumoniae in an in vitro infection model. Antimicrob. Agents Chemother. 39(8):1764–1771 (1995) Aug.

    PubMed  CAS  Google Scholar 

  47. D. Sevillano, M. J. Gimenez L. Alou et al. Effects of human albumin and serum on the in vitro bactericidal activity of cefditoren against penicillin-resistant Streptococcus pneumoniae. J. Antimicrob. Chemother. 60(1):156–158 (2007) Jul.

    Article  PubMed  CAS  Google Scholar 

  48. M. A. Zeitlinger, R. Sauermann, F. Traunmuller, A. Georgopoulos, M. Muller, and C. Joukhadar. Impact of plasma protein binding on antimicrobial activity using time-killing curves. J. Antimicrob. Chemother. 54(5):876–880 (2004) Nov.

    Article  PubMed  CAS  Google Scholar 

  49. F. Cafini, L. Aguilar N. Gonzalez et al. In vitro effect of the presence of human albumin or human serum on the bactericidal activity of daptomycin against strains with the main resistance phenotypes in Gram-positives. J. Antimicrob. Chemother. 59(6):1185–1189 (2007) Jun.

    Article  PubMed  CAS  Google Scholar 

  50. B. T. Tsuji, S. N. Leonard, P. R. Rhomberg, R. N. Jones, and M. J. Rybak. Evaluation of daptomycin, telavancin, teicoplanin, and vancomycin activity in the presence of albumin or serum. Diagn. Microbiol. Infect. Dis. 60(4):441–444 (2008).

    Article  PubMed  CAS  Google Scholar 

  51. H. Laue, T. Valensise, A. Seguin, S. Hawser, S. Lociuro, and K. Islam. Effect of human plasma on the antimicrobial activity of iclaprim in vitro. J. Antimicrob. Chemother. 60(6):1388–1390 (2007) Dec.

    Article  PubMed  CAS  Google Scholar 

  52. J. M. Woodcock, J. M. Andrews, N. P. Brenwald, J. P. Ashby, and R. Wise. The in-vitro activity of faropenem, a novel oral penem. J. Antimicrob. Chemother. 39(1):35–43 (1997) Jan.

    Article  PubMed  CAS  Google Scholar 

  53. L. R. Peterson, and C. J. Shanholtzer. Tests for bactericidal effects of antimicrobial agents: technical performance and clinical relevance. Clin. Microbiol. Rev. 5(4):420–432 (1992) Oct.

    PubMed  CAS  Google Scholar 

  54. N. C. f. C. L. Standards. Methods for determining bactericidal activity of antimicrobial agents. Document M26-P. In: Stand. NCCL, ed. 7(2):35–76; 1987.

  55. I. P. Balcabao, L. Alou, L. Aguilar, M. L. Gomez-Lus, M. J. Gimenez, and J. Prieto. Influence of the decrease in ciprofloxacin susceptibility and the presence of human serum on the in vitro susceptibility of Streptococcus pneumoniae to five new quinolones. J. Antimicrob. Chemother. 48(6):907–909 (2001) Dec.

    Article  PubMed  CAS  Google Scholar 

  56. B. Bedenic. Selection of Klebsiella pneumoniae mutants with high-level cefotaxime resistance during growth in serum containing therapeutic concentrations of cefotaxime. Chemotherapy. 48(1):10–14 (2002) Mar.

    Article  PubMed  CAS  Google Scholar 

  57. F. J. Boswell, J. P. Ashby, J. M. Andrews, and R. Wise. Effect of protein binding on the in vitro activity and pharmacodynamics of faropenem. J. Antimicrob. Chemother. 50(4):525–532 (2002) Oct.

    Article  PubMed  CAS  Google Scholar 

  58. J. R. Edwards. Cefotetan: antibacterial activity against Staphylococcus aureus in the presence of human serum. Chemioterapia. 7(4):271–273 (1988) Aug.

    PubMed  CAS  Google Scholar 

  59. I. Gustafsson, and O. Cars. The influence of protein binding on the antibacterial activity of faropenem against Haemophilus influenzae. Clin. Microbiol. Infect. 10(10):934–937 (2004) Oct.

    Article  PubMed  CAS  Google Scholar 

  60. K. D. Leuthner, C. M. Cheung, and M. J. Rybak. Comparative activity of the new lipoglycopeptide telavancin in the presence and absence of serum against 50 glycopeptide non-susceptible staphylococci and three vancomycin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 58(2):338–343 (2006) Aug.

    Article  PubMed  CAS  Google Scholar 

  61. D. E. Nix, K. R. Matthias, and E. C. Ferguson. Effect of ertapenem protein binding on killing of bacteria. Antimicrob. Agents Chemother. 48(9):3419–3424 (2004) Sep.

    Article  PubMed  CAS  Google Scholar 

  62. I. Odenholt, E. Lowdin, and O. Cars. Pharmacodynamic effects of telavancin against methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains in the presence of human albumin or serum and in an in vitro kinetic model. Antimicrob. Agents Chemother. 51(9):3311–3316 (2007) Sep.

    Article  PubMed  CAS  Google Scholar 

  63. T. M. Perl, M. A. Pfaller, A. Houston, and R. P. Wenzel. Effect of serum on the in vitro activities of 11 broad-spectrum antibiotics. Antimicrob. Agents Chemother. 34(11):2234–2239 (1990) Nov.

    PubMed  CAS  Google Scholar 

  64. F. J. Schmitz, M. Boos, S. Mayer, J. Verhoef, D. Milatovic, and A. C. Fluit. In vitro activity of faropenem and 20 other compounds against beta-lactamase-positive and -negative Moraxella catarrhalis and Haemophilus influenzae isolates and the effect of serum on faropenem MICs. J. Antimicrob. Chemother. 49(1):220–223 (2002) Jan.

    Article  PubMed  CAS  Google Scholar 

  65. R. Wise. Protein binding of beta-lactams: the effects on activity and pharmacology particularly tissue penetration. I. J. Antimicrob. Chemother. 12(1):1–18 (1983) Jul.

    Article  PubMed  CAS  Google Scholar 

  66. M. Pistolozzi, and C. Bertucci. Species-dependent stereoselective drug binding to albumin: a circular dichroism study. Chirality. 20(3–4):552–558 (2008) Mar.

    Article  PubMed  CAS  Google Scholar 

  67. B. T. Tsuji, and M. J. Rybak. Short-course gentamicin in combination with daptomycin or vancomycin against Staphylococcus aureus in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob. Agents Chemother. 49(7):2735–2745 (2005) Jul.

    Article  PubMed  CAS  Google Scholar 

  68. A. Louie, P. Kaw, W. Liu, N. Jumbe, M. H. Miller, and G. L. Drusano. Pharmacodynamics of daptomycin in a murine thigh model of Staphylococcus aureus infection. Antimicrob. Agents Chemother. 45(3):845–851 (2001) Mar.

    Article  PubMed  CAS  Google Scholar 

  69. I. Lutsar, and I. R. Friedland. Pharmacokinetics and pharmacodynamics of cephalosporins in cerebrospinal fluid. Clin. Pharmacokinet. 39(5):335–343 (2000) Nov.

    Article  PubMed  CAS  Google Scholar 

  70. J. Aagaard, T. Gasser, P. Rhodes, and P. O. Madsen. MICs of ciprofloxacin and trimethoprim for Escherichia coli: influence of pH, inoculum size and various body fluids. Infection. 19(Suppl 3):S167–169 (1991).

    Article  PubMed  Google Scholar 

  71. G. G. Zhanel, J. A. Karlowsky, R. J. Davidson, and D. J. Hoban. Influence of human urine on the in vitro activity and postantibiotic effect of ciprofloxacin against Escherichia coli. Chemotherapy. 37(3):218–223 (1991).

    Article  PubMed  CAS  Google Scholar 

  72. M. Mueller, A. de la Pena, and H. Derendorf. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: kill curves versus MIC. Antimicrob. Agents Chemother. 48(2):369–377 (2004) Feb.

    Article  PubMed  CAS  Google Scholar 

  73. C. W. Stratton, L. S. Weeks, and K. E. Aldridge. Comparison of kill-kinetic studies with agar and broth microdilution methods for determination of antimicrobial activity of selected agents against members of the Bacteroides fragilis group. J. Clin. Microbiol. 25(4):645–649 (1987) Apr.

    PubMed  CAS  Google Scholar 

  74. R. Sauermann, G. Delle-Karth C. Marsik et al. Pharmacokinetics and pharmacodynamics of cefpirome in subcutaneous adipose tissue of septic patients. Antimicrob. Agents Chemother. 49(2):650–655 (2005) Feb.

    Article  PubMed  CAS  Google Scholar 

  75. M. A. Zeitlinger, B. M. Erovic, R. Sauermann, A. Georgopoulos, M. Muller, and C. Joukhadar. Plasma concentrations might lead to overestimation of target site activity of piperacillin in patients with sepsis. J. Antimicrob. Chemother. 56(4):703–708 (2005) Oct.

    Article  PubMed  CAS  Google Scholar 

  76. M. N. Dudley, J. Blaser, D. Gilbert, and S. H. Zinner. Significance of “extravascular” protein binding for antimicrobial pharmacodynamics in an in vitro capillary model of infection. Antimicrob. Agents Chemother. 34(1):98–101 (1990) Jan.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Zeitlinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beer, J., Wagner, C.C. & Zeitlinger, M. Protein Binding of Antimicrobials: Methods for Quantification and for Investigation of its Impact on Bacterial Killing. AAPS J 11, 1–12 (2009). https://doi.org/10.1208/s12248-008-9072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-008-9072-1

Key words

Navigation