Skip to main content
Log in

Diversity of the Vaginal Microbiome Correlates With Preterm Birth

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Reproductive tract infection is a major initiator of preterm birth (PTB). The objective of this prospective cohort study of 88 participants was to determine whether PTB correlates with the vaginal microbiome during pregnancy. Total DNA was purified from posterior vaginal fornix swabs during gestation. The 16S ribosomal RNA gene was amplified using polymerase chain reaction primers, followed by chain-termination sequencing. Bacteria were identified by comparing contig consensus sequences with the Ribosomal Database Project. Dichotomous responses were summarized via proportions and continuous variables via means ± standard deviation. Mean Shannon Diversity index differed by Welch t test (P = .00016) between caucasians with PTB and term gestation. Species diversity was greatest among African Americans (P = .0045). Change in microbiome/Lactobacillus content and presence of putative novel/noxious bacteria did not correlate with PTB. We conclude that uncultured vaginal bacteria play an important role in PTB and race/ethnicity and sampling location are important determinants of the vaginal microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Martin JA, Hamilton BE, Ventura SJ, Osterman MJK, Wilson EC, Mathews TJ,. Births: Final Data for 2010. National Vital Statistics Reports, vol 61. http://www.cdc.gov/nchs/births.htm. Accessed August 1, 2012.

  2. Behrman RE, Butler AS. Preterm Birth: Causes, Consequences, and Prevention. Washington, DC: National Academies Press; 2007.

    Google Scholar 

  3. World Health Organization, March of Dimes, The partnership for maternal, Newborn & Child Health, Save the Children. Born too soon: the global action report on preterm birth. 2012. whqlibdoc. who.int/publications/2012/9789241503433. Accessed February 25, 2012.

  4. Gonçalves LF, Chaiworapongsa T, Romero R. Intrauterine infection and prematurity. Ment Retard Dev Disabil Res Rev. 2002;8(1):3–13.

    Article  Google Scholar 

  5. Gardella C, Riley DE, Hitti J, Agnew K, Krieger JN, Eschenbach D. Identification and sequencing of bacterial rDNAs in culture-negative amniotic fluid from women in premature labor. Am J Perinatol. 2004;21(6):319–323.

    Article  Google Scholar 

  6. DiGiulio DB, Romero R, Kusanovic JP, et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm prelabor rupture of membranes. Am J Reprod Immunol. 2010;64(1):38–57.

    Google Scholar 

  7. Hyman RW, Fukushima M, Diamond L, Kumm J, Giudice LC, Davis RW. Microbes on the human vaginal epithelium. Proc Natl Acad Sci U S A. 2005;102(22):7952–7957.

    Article  CAS  PubMed Central  Google Scholar 

  8. Hyman RW, Herndon CN, Jiang H, et al. The dynamics of the vaginal microbiome during infertility therapy with in vitro fertilization-embryo transfer. J Assist Reprod Genet. 2012;29(2):105–115.

    Article  PubMed Central  Google Scholar 

  9. Hyman RW, Jiang H, Fukushima M, Davis RW. A direct comparison of the KB Basecaller and phred for identifying the bases from DNA sequencing using chain termination chemistry. BMC Res Notes. 2010;3:257.

    Article  PubMed Central  Google Scholar 

  10. Huber T, Faulkner G, Hugenholtz P. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics. 2004;20(14):2317–2319.

    Article  CAS  Google Scholar 

  11. DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimerachecked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–5072.

    Article  Google Scholar 

  12. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–5267.

    Article  CAS  PubMed Central  Google Scholar 

  13. Cole JR, Wang Q, Cardenas E, et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009;37(Database issue):D141–D145.

    Article  CAS  Google Scholar 

  14. Jumpstart Consortium Human Microbiome Project Data Generation Working Group. Evaluation of 16S rDNA-based community profiling for human microbiome research. PLoS One. 2012;7(6):e39315.

    Article  PubMed Central  Google Scholar 

  15. Wayne LG, Brenner DJ, Colwell RR, et al. Report of the ad-hoccommittee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol. 1987;37(4):463–464.

    Article  Google Scholar 

  16. Pace NR. A molecular view of microbial diversity and the biosphere. Science. 1997;276(5313):734–740.

    Article  CAS  Google Scholar 

  17. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol. 2002;52(pt 3): 1043–1047.

    CAS  PubMed  Google Scholar 

  18. Shannon CE. A mathematical theory of communication. Bell Syst. Tech. J. 1948;27:379–423. 623–656.

    Article  Google Scholar 

  19. Welch BL. The generalization of “Student’s” problem when several different population variances are involved. Biometrika. 1947;34(1–2):28–35.

    Article  CAS  Google Scholar 

  20. Chao A. Non-parametric estimation of the number of classes in a population. Scand J Statist. 1984;11:265–270.

    Google Scholar 

  21. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Micro. 2001;67(10):4399–4406.

    Article  CAS  Google Scholar 

  22. Caporaso JG, Kucynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–336.

    Article  CAS  PubMed Central  Google Scholar 

  23. Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Bioinformatics. 2011; Chap. 10: Unit 10.7.

  24. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 2011;5(2):169–172.

    Article  Google Scholar 

  25. White BA, Creedon DJ, Nelson KE, Wilson BA. The vaginal microbiome in health and disease. Trends Endocriinol Metab. 2011;22(10):389–393.

    Article  CAS  Google Scholar 

  26. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39(8):561–577.

    Article  CAS  Google Scholar 

  27. McCullagh P, Nelder J. Generalized Linear Models. 2nd ed. Boca Raton, FL: Chapman and Hall/CRC; 1989.

    Book  Google Scholar 

  28. Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108(suppl 1):4680–4687.

    Article  CAS  Google Scholar 

  29. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214.

    Article  PubMed Central  Google Scholar 

  30. Hernández-Rodríguez C, Romero-González R, Albani-Campanario M, Figueroa-Damián R, Meraz-Cruz N, Hernández-Guerrero C. Vaginal microbiota of healthy pregnant Mexican women is constituted by four Lactobacillus species and several vaginosis-associated bacteria. Infect Dis Obstet Gynecol. 2011;2011:851485.

    Article  Google Scholar 

  31. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–11975.

    Article  PubMed Central  Google Scholar 

  32. Tamrakar R, Yamada T, Furuta I, et al. Association between Lactobacillus species and bacterial vaginosis-related bacteria, and bacterial vaginosis scores in pregnant Japanese women. BMC Infect Dis. 2007;7:128.

    Article  PubMed Central  Google Scholar 

  33. Kiss H, Kögler B, Petricevic L, et al. Vaginal Lactobacillus microbiota of healthy women in the late first trimester of pregnancy. BJOG. 2007;114(11):1402–1407.

    Article  CAS  Google Scholar 

  34. Verstraelen H, Verhelst R, Claeys G, De Backer E, Temmerman M, Vaneechoutte M. Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. BMC Microbiol. 2009;9:116.

    Article  PubMed Central  Google Scholar 

  35. Aagaard K, Riehle K, Ma J, et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One. 2012;7(6):e36466.

    Article  CAS  PubMed Central  Google Scholar 

  36. Kim TK, Thomas SM, Ho M, et al. Heterogeneity of vaginal microbial communities within individuals. J Clin Microbiol. 2009;47(4):1181–1189.

    Article  CAS  PubMed Central  Google Scholar 

  37. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol. 2008;74(8):2461–2470.

    Article  CAS  PubMed Central  Google Scholar 

  38. Soergel DA, Dey N, Knight R, Brenner SE. Selection of primers for optimal taxonomic classification of environmental 16 S rRNA gene sequences. ISME J. 2012;6(7):1440–1444.

    Article  CAS  PubMed Central  Google Scholar 

  39. Verhelst R, Verstraelen H, Claeys G, et al. Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis. BMC Microbiol. 2004;4:16.

    Article  PubMed Central  Google Scholar 

  40. Fettweis JM, Serrano MG, Sheth NU, et al.; Vaginal Microbiome Consortium (additional members). Species-level classification of the vaginal microbiome. BMC Genomics. 2012;13(suppl 8):S17.

    Article  PubMed Central  Google Scholar 

  41. Farrelly V, Rainey FA, Stackebrandt E. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol. 1995;61(7):2798–2801.

    Article  CAS  PubMed Central  Google Scholar 

  42. Klappenbach JA, Dunbar JM, Schmidt TM. rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol. 2000;66(4):1328–1333.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda C. Giudice MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyman, R.W., Fukushima, M., Jiang, H. et al. Diversity of the Vaginal Microbiome Correlates With Preterm Birth. Reprod. Sci. 21, 32–40 (2014). https://doi.org/10.1177/1933719113488838

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113488838

Keywords

Navigation