Skip to main content

Advertisement

Log in

The Immunomodulatory Roles of Macrophages at the Maternal—Fetal Interface

  • Reviews
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Macrophages are versatile cells that play a central role in innate and adaptive immunity and participate in a wide variety of biological processes. In the uterine decidua, macrophages represent a major leukocyte subset throughout pregnancy. Here, decidual macrophages exert an immunosuppressive phenotype characterized by abundant production of interleukin (IL)-10 and indoleamine 2,3-dioxygenase activity. Their polarized cytokine secretion pattern has recently been classified as an M2 phenotype. These features of decidual macrophages favor maternal immune tolerance to semiallogenic fetus. In addition, macrophages cooperate with trophoblast cells during the early stages of human pregnancy to support uterine vasculature remodeling by removing apoptotic cells and through the production of proteases that degrade the extracellular matrix. In the peripartum period, macrophages also participate in the regulation of cervical ripening and the initiation of parturition through the production of proinflammatory cytokines and prostaglandin E2 (PGE2). Aberrant activity of uterine macrophages is linked to the pathogenesis of preeclampsia and preterm delivery. Here, we review the immunomodulatory roles of decidual macrophages during pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Saito S. Cytokine network at the feto-maternal interface. J Reprod Immunol. 2000;47(2):87–103.

    Article  CAS  PubMed  Google Scholar 

  2. Seavey MM, Mosmann TR. Immunoregulation of fetal and anti-paternal immune responses. Immunol Res. 2008;40(2): 97–113.

    Article  CAS  PubMed  Google Scholar 

  3. Szekeres-Bartho J. Immunological relationship between the mother and the fetus. Int Rev Immunol. 2002;21(6):471–495.

    Article  CAS  PubMed  Google Scholar 

  4. Bennaceur K, Chapman JA, Touraine JL, Portoukalian J. Immunosuppressive networks in the tumour environment and their effect in dendritic cells. Biochim Biophys Acta. 2009; 1795(1):16–24.

    CAS  PubMed  Google Scholar 

  5. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 2006;25(3):315–322.

    Article  PubMed  Google Scholar 

  6. Dugast AS, Vanhove B. Immune regulation by non-lymphoid cells in transplantation. Clin Exp Immunol. 2009;156(1):25–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):281–286.

    Article  CAS  PubMed  Google Scholar 

  8. Classen A, Lloberas J, Celada A. Macrophage activation: classical versus alternative. Methods Mol Biol. 2009;531:29–43.

    Article  CAS  PubMed  Google Scholar 

  9. Kämmerer U. Antigen-presenting cells in the decidua. Chem Immunol Allergy. 2005;89:96–104.

    Article  PubMed  Google Scholar 

  10. McIntire RH, Hunt JS. Antigen presenting cells and HLA-G—a review. Placenta. 2005;26(suppl A):S104–S109.

    Article  PubMed  CAS  Google Scholar 

  11. Mor G, Abrahams VM. Potential role of macrophages as immunoregulators of pregnancy. Reprod Biol Endocrinol. 2003;1:119.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bulmer JN, Johnson PM. Macrophage populations in the human placenta and amniochorion. Clin Exp Immunol. 1984;57(2):393–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lessin DL, Hunt JS, King CR, Wood GW. Antigen expression by cells near the maternal-fetal interface. Am J Reprod Immunol Microbiol. 1988;16(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  14. Vince GS, Starkey PM, Jackson MC, Sargent IL, Redman CW. Flow cytometric characterisation of cell populations in human pregnancy decidua and isolation of decidual macrophages. J Immunol Methods. 1990;132(2):181–189.

    Article  CAS  PubMed  Google Scholar 

  15. Kabawat SE, Mostoufi-Zadeh M, Driscoll SG, Bhan AK. Implantation site in normal pregnancy. A study with monoclonal antibodies. Am J Pathol. 1985;118(1):76–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Abrahams VM, Kim YM, Straszewski SL, Romero R, Mor G. Macrophages and apoptotic cell clearance during pregnancy. Am J Reprod Immunol. 2004;51(4):275–282.

    Article  PubMed  Google Scholar 

  17. Ferenbach D, Hughes J. Macrophages and dendritic cells: what is the difference? Kidney Int. 2008;74(1):5–7.

    Article  CAS  PubMed  Google Scholar 

  18. Blois SM, Kämmerer U, Alba Soto C, et al. Dendritic cells: key to fetal tolerance? Biol Reprod. 2007;77(4):590–598.

    Article  CAS  PubMed  Google Scholar 

  19. Ban YL, Kong BH, Qu X, Yang QF, Ma YY. BDCA-1+, BDCA-2+ and BDCA-3+ dendritic cells in early human pregnancy decidua. Clin Exp Immunol. 2008;151(3):399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kämmerer U, Eggert AO, Kapp M, et al. Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. Am J Pathol. 2003;162(3):887–896.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Soilleux EJ, Morris LS, Leslie G, et al. Constitutive and induced expression of DC-SIGN on dendritic cell and macro-phage subpopulations in situ and in vitro. J Leukoc Biol. 2002; 71(3):445–457.

    CAS  PubMed  Google Scholar 

  22. Palucka KA, Taquet N, Sanchez-Chapuis F, Gluckman JC. Dendritic cells as the terminal stage of monocyte differentiation. J Immunol. 1998;160(9):4587–4595.

    CAS  PubMed  Google Scholar 

  23. Stout RD, Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol. 2004;76(3):509–513.

    Article  CAS  PubMed  Google Scholar 

  24. Jokhi PP, King A, Boocock C, Loke YW. Secretion of colony stimulating factor-1 by human first trimester placental and decidual cell populations and the effect of this cytokine on trophoblast thymidine uptake in vitro. Hum Reprod. 1995;10(10): 2800–2807.

    Article  CAS  PubMed  Google Scholar 

  25. Lockwood CJ, Matta P, Krikun G, et al. Regulation of monocyte chemoattractant protein-1 expression by tumor necrosis factor-α and interleukin-1β in first trimester human decidual cells: implications for preeclampsia. Am J Pathol. 2006;168(2):445–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arcuri F, Buchwalder L, Toti P, et al. Differential regulation of colony stimulating factor 1 and macrophage migration inhibitory factor expression by inflammatory cytokines in term human decidua: implications for macrophage trafficking at the fetal-maternal interface. Biol Reprod. 2007;76(3): 433–439.

    Article  CAS  PubMed  Google Scholar 

  27. Kyaw Y, Hasegawa G, Takatsuka H, et al. Expression of macrophage colony-stimulating factor, scavenger receptors, and macrophage proliferation in the pregnant mouse uterus. Arch Histol Cytol. 1998;61(5):383–393.

    Article  CAS  PubMed  Google Scholar 

  28. Wood GW, Hausmann E, Choudhuri R. Relative role of CSF-1, MCP-1/JE, and RANTES in macrophage recruitment during successful pregnancy. Mol Reprod Dev. 1997; 46(1):62–70.

    Article  CAS  PubMed  Google Scholar 

  29. Drake PM, Gunn MD, Charo IF, et al. Human placental cytotrophoblasts attract monocytes and CD56bright natural killer cells via the actions of monocyte inflammatory protein 1α. J Exp Med. 2001;193(10):1199–1212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abrahams VM, Visintin I, Aldo PB, Guller S, Romero R, Mor G. A role for TLRs in the regulation of immune cell migration by first trimester trophoblast cells. J Immunol. 2005;175(12):8096–8104.

    Article  CAS  PubMed  Google Scholar 

  31. Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 2008;8(7):533–544.

    Article  CAS  PubMed  Google Scholar 

  32. Saito S, Motoyoshi K, Ichijo M, Saito M, Takaku F. High serum human macrophage colony-stimulating factor level during pregnancy. Int J Hematol. 1992;55(3):219–225.

    CAS  PubMed  Google Scholar 

  33. Pollard JW, Hunt JS, Wiktor-Jedrzejczak W, Stanley ER. A pregnancy defect in the osteopetrotic (op/op) mouse demonstrates the requirement for CSF-1 in female fertility. Dev Biol. 1991;148(1):273–283.

    Article  CAS  PubMed  Google Scholar 

  34. De M, Wood GW. Influence of oestrogen and progesterone on macrophage distribution in the mouse uterus. J Endocrinol. 1990;126(3):417–424.

    Article  CAS  PubMed  Google Scholar 

  35. Tibbetts TA, Conneely OM, O’Malley BW. Progesterone via its receptor antagonizes the pro-inflammatory activity of estrogen in the mouse uterus. Biol Reprod. 1999;60(5): 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  36. DeLoia JA, Stewart-Akers AM, Brekosky J, Kubik CJ. Effects of exogenous estrogen on uterine leukocyte recruitment. Fertil Steril. 2002;77(3):548–554.

    Article  Google Scholar 

  37. Gordon S. The macrophage: past, present and future. Eur J Immunol. 2007;37(suppl 1):S9–S17.

    Article  CAS  PubMed  Google Scholar 

  38. Clark DE, Smith SK, Licence D, Evans AL, Charnock-Jones DS. Comparison of expression patterns for placenta growth factor, vascular endothelial growth factor (VEGF), VEGF-B and VEGF-C in the human placenta throughout gestation. J Endocrinol. 1998;159(3):459–467.

    Article  CAS  PubMed  Google Scholar 

  39. Li C, Houser BL, Nicotra ML, Strominger JL. HLA-G homodimer-induced cytokine secretion through HLA-G receptors on human decidual macrophages and natural killer cells. Proc Natl Acad Sci U S A. 2009;106(14):5767–5772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smith SD, Dunk CE, Aplin JD, Harris LK, Jones RL. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol. 2009; 174(5):1959–1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Plaisier M, Dennert I, Rost E, et al. Decidual vascularization and the expression of angiogenic growth factors and proteases in first trimester spontaneous abortions. Hum Reprod. 2009; 24(1):185–197.

    Article  CAS  PubMed  Google Scholar 

  42. Parhar RS, Yagel S, Lala PK. PGE2-mediated immunosuppression by first trimester human decidual cells blocks activation of maternal leukocytes in the decidua with potential anti-trophoblast activity. Cell Immunol. 1989;120(1):61–74.

    Article  CAS  PubMed  Google Scholar 

  43. Mizuno M, Aoki K, Kimbara T. Functions of macrophages in human decidual tissue in early pregnancy. Am J Reprod Immunol. 1994;31(4):180–188.

    Article  CAS  PubMed  Google Scholar 

  44. Heikkinen J, Möttönen M, Komi J, Alanen A, Lassila O. Phenotypic characterization of human decidual macrophages. Clin Exp Immunol. 2003;131(3):498–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McIntire RH, Ganacias KG, Hunt JS. Programming of human monocytes by the uteroplacental environment. Reprod Sci. 2008;15(5):437–447.

    Article  CAS  PubMed  Google Scholar 

  46. Gustafsson C, Mjösberg J, Matussek A, et al. Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. PLoS ONE. 2008;3(4):e2078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lidström C, Matthiesen L, Berg G, Sharma S, Ernerudh J, Ekerfelt C. Cytokine secretion patterns of NK cells and macrophages in early human pregnancy decidua and blood: implications for suppressor macrophages in decidua. Am J Reprod Immunol. 2003;50(6):444–452.

    Article  PubMed  Google Scholar 

  48. de Vries JE. Immunosuppressive and anti-inflammatory properties of interleukin 10. Ann Med. 1995;27(5):537–541.

    Article  PubMed  Google Scholar 

  49. Akdis CA, Blaser K. IL-10-induced anergy in peripheral T cell and reactivation by microenvironmental cytokines: two key steps in specific immunotherapy. FASEB J. 1999;13(6):603–609.

    Article  CAS  PubMed  Google Scholar 

  50. Thaxton JE, Romero R, Sharma S. TLR9 activation coupled to IL-10 deficiency induces adverse pregnancy outcomes. J Immunol. 2009;183(2):1144–1154.

    Article  CAS  PubMed  Google Scholar 

  51. Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281(5380):1191–1193.

    Article  CAS  PubMed  Google Scholar 

  52. Baban B, Chandler P, McCool D, Marshall B, Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J Reprod Immunol. 2004;61(2):67–77.

    Article  CAS  PubMed  Google Scholar 

  53. Kudo Y, Boyd CA, Spyropoulou I, et al. Indoleamine 2,3-dioxygenase: distribution and function in the developing human placenta. J Reprod Immunol. 2004;61(2):87–98.

    Article  CAS  PubMed  Google Scholar 

  54. Hönig A, Rieger L, Kapp M, Sütterlin M, Dietl J, Kämmerer U. Indoleamine 2,3-dioxygenase (IDO) expression in invasive extravillous trophoblast supports role of the enzyme for materno-fetal tolerance. J Reprod Immunol. 2004; 61(2):79–86.

    Article  PubMed  CAS  Google Scholar 

  55. Ligam P, Manuelpillai U, Wallace EM, Walker D. Localisation of indoleamine 2,3-dioxygenase and kynurenine hydroxylase in the human placenta and decidua: implications for role of the kynurenine pathway in pregnancy. Placenta. 2005;26(6):498–504.

    Article  CAS  PubMed  Google Scholar 

  56. Kitaya K, Yasuda J, Yagi I, Tada Y, Fushiki S, Honjo H. IL-15 expression at human endometrium and decidua. Biol Reprod. 2000;63(3):683–687.

    Article  CAS  PubMed  Google Scholar 

  57. Carson WE, Giri JG, Lindemann MJ, et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med. 1994;180(4): 1395–1403.

    Article  CAS  PubMed  Google Scholar 

  58. Grabstein KH, Eisenman J, Shanebeck K, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science. 1994;264(5161):965–968.

    Article  CAS  PubMed  Google Scholar 

  59. Manaster I, Mizrahi S, Goldman-Wohl D, et al. Endometrial NK cells are special immature cells that await pregnancy. J Immunol. 2008;181(3):1869–1876.

    Article  CAS  PubMed  Google Scholar 

  60. Fest S, Aldo PB, Abrahams VM, et al. Trophoblast-macrophage interactions: a regulatory network for the protection of pregnancy. Am J Reprod Immunol. 2007;57(1):55–66.

    Article  PubMed  Google Scholar 

  61. Crisa L, McMaster MT, Ishii JK, Fisher SJ, Salomon DR. Identification of a thymic epithelial cell subset sharing expression of the class Ib HLA-G molecule with fetal trophoblasts. J Exp Med. 1997;186(2):289–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hunt JS, Orr HT. HLA and maternal-fetal recognition. FASEB J. 1992;6(6):2344–2348.

    Article  CAS  PubMed  Google Scholar 

  63. Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R. A class I antigen, HLA-G, expressed in human trophoblasts. Science. 1990;248(4952):220–223.

    Article  CAS  PubMed  Google Scholar 

  64. Petroff MG, Sedlmayr P, Azzola D, Hunt JS. Decidual macrophages are potentially susceptible to inhibition by class Ia and class Ib HLA molecules. J Reprod Immunol. 2002; 56(1–2):3–17.

    Article  CAS  PubMed  Google Scholar 

  65. McIntire RH, Morales PJ, Petroff MG, Colonna M, Hunt JS. Recombinant HLA-G5 and -G6 drive U937 myelomonocytic cell production of TGF-beta1. J Leukoc Biol. 2004;76(6): 1220–1228.

    Article  CAS  PubMed  Google Scholar 

  66. Mackler AM, Iezza G, Akin MR, McMillan P, Yellon SM. Macrophage trafficking in the uterus and cervix precedes parturition in the mouse. Biol Reprod. 1999;61(4):879–883.

    Article  CAS  PubMed  Google Scholar 

  67. Timmons BC, Fairhurst AM, Mahendroo MS. Temporal changes in myeloid cells in the cervix during pregnancy and parturition. J Immunol. 2009;182(5):2700–2707.

    Article  CAS  PubMed  Google Scholar 

  68. Sakamoto Y, Moran P, Bulmer JN, Searle RF, Robson SC. Macrophages and not granulocytes are involved in cervical ripening. J Reprod Immunol. 2005;66(2):161–173.

    Article  CAS  PubMed  Google Scholar 

  69. Ito A, Hiro D, Sakyo K, Mori Y. The role of leukocyte factors on uterine cervical ripening and dilation. Biol Reprod. 1987; 37(3):511–517.

    Article  CAS  PubMed  Google Scholar 

  70. Ito A, Hiro D, Ojima Y, Mori Y. Spontaneous production of interleukin-1-like factors from pregnant rabbit uterine cervix. Am J Obstet Gynecol. 1988;159(1):261–265.

    Article  CAS  PubMed  Google Scholar 

  71. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176(1):287–292.

    Article  CAS  PubMed  Google Scholar 

  72. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35.

    Article  CAS  PubMed  Google Scholar 

  73. Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity. 2005;23(4):344–346.

    Article  CAS  PubMed  Google Scholar 

  74. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–258.

    Article  CAS  PubMed  Google Scholar 

  75. Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol. 1989;7:445–480.

    Article  CAS  PubMed  Google Scholar 

  76. Galazka K, Wicherek L, Pitynski K, et al. Changes in the sub-population of CD25+ CD4+ and FOXP3+ regulatory T cells in decidua with respect to the progression of labor at term and the lack of analogical changes in the subpopulation of suppressive B7-H4 macrophages—a preliminary report. Am J Reprod Immunol. 2009;61(2):136–146.

    Article  CAS  PubMed  Google Scholar 

  77. Petroff MG, Chen L, Phillips TA, Azzola D, Sedlmayr P, Hunt JS. B7 family molecules are favorably positioned at the human maternal-fetal interface. Biol Reprod. 2003;68(5): 1496–1504.

    Article  CAS  PubMed  Google Scholar 

  78. Petroff MG, Kharatyan E, Torry DS, Holets L. The immuno-modulatory proteins B7-DC, B7-H2, and B7-H3 are differentially expressed across gestation in the human placenta. Am J Pathol. 2005;167(2):465–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Repnik U, Tilburgs T, Roelen DL, et al. Comparison of macrophage phenotype between decidua basalis and decidua parietalis by flow cytometry. Placenta. 2008;29(5):405–412.

    Article  CAS  PubMed  Google Scholar 

  80. Sasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod. 2004;10(5):347–353.

    Article  CAS  PubMed  Google Scholar 

  81. Tilburgs T, Roelen DL, van der Mast BJ, et al. Differential distribution of CD4(+)CD25(bright) and CD8(+)CD28(-) T-cells in decidua and maternal blood during human pregnancy. Placenta. 2006;27(suppl A):S47–S53.

    Article  PubMed  CAS  Google Scholar 

  82. Miwa N, Hayakawa S, Miyazaki S, et al. IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-gamma increase in normal pregnancy but decrease in spontaneous abortion. Mol Hum Reprod. 2005;11(12):865–870.

    Article  CAS  PubMed  Google Scholar 

  83. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene super-family, upon programmed cell death. EMBO J. 1992;11(11): 3887–3895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Keir ME, Liang SC, Guleria I, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med. 2006;203(4):883–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Okazaki T, Honjo T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol. 2006;27(4):195–201.

    Article  CAS  PubMed  Google Scholar 

  86. Guleria I, Khosroshahi A, Ansari MJ, et al. A critical role for the programmed death ligand 1 in fetomaternal tolerance. J Exp Med. 2005;202(2):231–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Taglauer ES, Trikhacheva AS, Slusser JG, Petroff MG. Expression and function of PDCD1 at the human maternal-fetal interface. Biol Reprod. 2008;79(3):562–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kuang DM, Zhao Q, Peng C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009;206(6):1327–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Katabuchi H, Yih S, Ohba T, et al. Characterization of macrophages in the decidual atherotic spiral artery with special reference to the cytology of foam cells. Med Electron Microsc. 2003;36(4):253–262.

    Article  PubMed  Google Scholar 

  90. Renaud SJ, Macdonald-Goodfellow SK, Graham CH. Coordinated regulation of human trophoblast invasiveness by macrophages and interleukin 10. Biol Reprod. 2007;76(3):448–454.

    Article  CAS  PubMed  Google Scholar 

  91. Hennessy A, Pilmore HL, Simmons LA, Painter DM. A deficiency of placental IL-10 in preeclampsia. J Immunol. 1999; 163(6):3491–3495.

    CAS  PubMed  Google Scholar 

  92. Sharma A, Satyam A, Sharma JB. Leptin, IL-10 and inflammatory markers (TNF-α, IL-6 and IL-8) in pre-eclamptic, normotensive pregnant and healthy non-pregnant women. Am J Reprod Immunol. 2007;58(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  93. LaMarca BD, Ryan MJ, Gilbert JS, Murphy SR, Granger JP. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr Hypertens Rep. 2007;9(6): 480–485.

    Article  Google Scholar 

  94. Madazli R, Aydin S, Uludag S, Vildan O, Tolun N. Maternal plasma levels of cytokines in normal and preeclamptic pregnancies and their relationship with diastolic blood pressure and fibronectin levels. Acta Obstet Gynecol Scand. 2003; 82(9):797–802.

    Article  PubMed  Google Scholar 

  95. Sehringer B, Schäfer WR, Wetzka B, et al. Formation of proinflammatory cytokines in human term myometrium is stimulated by lipopolysaccharide but not by corticotropin-releasing hormone. J Clin Endocrinol Metab. 2000;85(12): 4859–4865.

    CAS  PubMed  Google Scholar 

  96. Steinborn A, von Gall C, Hildenbrand R, Stutte HJ, Kaufmann M. Identification of placental cytokine-producing cells in term and preterm labor. Obstet Gynecol. 1998;91(3):329–335.

    Article  CAS  PubMed  Google Scholar 

  97. Watari M, Watari H, DiSanto ME, Chacko S, Shi GP, Strauss JF 3rd. Pro-inflammatory cytokines induce expression of matrix-metabolizing enzymes in human cervical smooth muscle cells. Am J Pathol. 1999;154(6):1755–1762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cockle JV, Gopichandran N, Walker JJ, Levene MI, Orsi NM. Matrix Metalloproteinases and their tissue inhibitors in preterm perinatal complications. Reprod Sci. 2007; 14(7):629–645.

    Article  CAS  PubMed  Google Scholar 

  99. Patni S, Flynn P, Wynen LP, et al. An introduction to Toll-like receptors and their possible role in the initiation of labour. BJOG. 2007;114(11):1326–1334.

    Article  CAS  PubMed  Google Scholar 

  100. Salminen A, Paananen R, Vuolteenaho R, et al. Maternal endotoxin-induced preterm birth in mice: fetal responses in toll-like receptors, collectins, and cytokines. Pediatr Res. 2008;63(3):280–286.

    Article  CAS  PubMed  Google Scholar 

  101. Wang H, Hirsch E. Bacterially-induced preterm labor and regulation of prostaglandin-metabolizing enzyme expression in mice: the role of toll-like receptor 4. Biol Reprod. 2003; 69(6):1957–1963.

    Article  CAS  PubMed  Google Scholar 

  102. Esplin MS, Romero R, Chaiworapongsa T, et al. Monocyte chemotactic protein-1 is increased in the amniotic fluid of women who deliver preterm in the presence or absence of intra-amniotic infection. J Matern Fetal Neonatal Med. 2005; 17(6):365–373.

    Article  CAS  PubMed  Google Scholar 

  103. Pearce BD, Garvin SE, Grove J, et al. Serum macrophage migration inhibitory factor in the prediction of preterm delivery. Am J Obstet Gynecol. 2008;199(1):46.e1–46.e6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny J. Schust MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagamatsu, T., Schust, D.J. The Immunomodulatory Roles of Macrophages at the Maternal—Fetal Interface. Reprod. Sci. 17, 209–218 (2010). https://doi.org/10.1177/1933719109349962

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719109349962

Key words

Navigation