Skip to main content

Advertisement

Log in

Maternal Caffeine Administration and Cerebral Oxygenation in Near-Term Fetal Sheep

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The authors test the null hypothesis that maternal caffeine administration will not significantly alter fetal cerebral oxygenation. The authors measured fetal arterial blood gases, cortical tissue O2 tension (tPO2), sagittal sinus blood gases, and laser Doppler cerebral blood flow in response to a 30-minute caffeine infusion (400 mg intravenously) into 7 near-term pregnant ewes, and they calculated fractional O2 extraction and relative cerebral metabolic rate for O2 (CMRO2). Following maternal caffeine infusion, both fetal cortical tPO2 and sagittal sinus (HbO2) decreased significantly, from 10.7 ± 0.9 to 6.8 ± 1.1 Torr and from 46% ± 2% to 37% ± 6%, respectively. This was associated with significant 20% to 30% increases in fractional O2 extraction and CMRO2. Fetal arterial blood gas values did not change significantly. In conclusion, maternal caffeine administration significantly decreases cerebral oxygenation without affecting systemic oxygenation in fetal sheep. The authors speculate that for a fetus that may be otherwise compromised, this increase in CMRO2 with decreased cortical tPO2 could present a problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kreuzer F. Oxygen supply to tissues: the Krogh model and its assumptions. Experientia. 1982;39:1415–1426.

    Article  Google Scholar 

  2. Jones MD Jr, Traystman R. Cerebral oxygenation of the fetus, newborn, and adult. Semin Perinatol. 1984;8:205–226.

    Google Scholar 

  3. Nehlig A. Cerebral energy metabolism and blood flow: useful tools for the understanding of the behavioral effects of caffeine. In: Gupta BS, Gupta U, eds. Caffeine and Behavior: Current Views and Research Trends. New York:CRC Press;1999:31–47.

    Google Scholar 

  4. Goldstein A., Warren R. Passage of caffeine into human gonadal and fetal tissue. Biochem Pharmacol. 1962;11:166–168.

    Article  CAS  Google Scholar 

  5. Galli C., Spano PF, Szyszka K. Accumulation of caffeine and its metabolites in rat fetal brain and liver. Pharmacol Res Commun. 1975;7:217–221.

    Article  CAS  Google Scholar 

  6. Erenberg A., Leff RD, Haack DG, Mosdell KW, Hicks GM, Wynne BA, and the Caffeine Citrate Study Group. Caffeine citrate for the treatment of apnea of prematurity: a double-blind, placebo-controlled study. Pharmacotherapy. 2000;20:644–652.

    Article  CAS  Google Scholar 

  7. Millar D., Schmidt B. Controversies surrounding xanthine therapy. Semin Neonatol. 2004;9:239–244.

    Article  Google Scholar 

  8. Fredholm BB, Bättig K., Holmén J., Nehlig A., Zvartau EE Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51:83–133.

    CAS  PubMed  Google Scholar 

  9. León D., Albazanz JL, Ruiz MA, Martin M. Chronic caffeine or theophylline intake during pregnancy inhibits A1 receptor function in the rat brain. Neuroscience. 2005;131:481–489.

    Article  Google Scholar 

  10. Mathew RJ, Wilson WH Caffeine induced changes in cerebral circulation. Stroke. 1985;16:814–817.

    Article  CAS  Google Scholar 

  11. Cameron OG, Modell JG, Hariharan M. Caffeine and human cerebral blood flow: a positron emission tomography study. Life Sci. 1990;47:1141–1146.

    Article  CAS  Google Scholar 

  12. Blood AB, Hunter CJ, Power GG The role of adenosine in regulation of cerebral blood flow during hypoxia in the near-term fetal sheep. J Physiol (Lond). 2002;543:1015–1023.

    Article  CAS  Google Scholar 

  13. Tomimatsu T., Pereyra-Peňa J., Hatran DP, Longo LD Fetal hypercapnia and cerebral tissue oxygenation: studies in near-term sheep. Pediatr Res. 2006;60:711–716.

    Article  Google Scholar 

  14. Tomimatsu T., Pereyra-Peňa J., Hatran DP, Longo LD Maternal oxygen administration and fetal cerebral oxygenation: studies on near-term fetal lambs at both low and high altitude. Am J Obstet Gynecol. 2006;195:535–541.

    Article  CAS  Google Scholar 

  15. Pereyra-Peňa J., Tomimatsu T., Hatran DP, McGill LL, Longo LD Cerebral blood flow and oxygenation in ovine fetus: response to superimposed hypoxia at both low and high altitude. J Physiol (Lond). 2007;578(pt 1):359–370.

    Article  Google Scholar 

  16. Bishai JM, Blood AB, Hunter CJ, Longo LD, Power GG Fetal lamb cerebral blood flow (CBF) and oxygen tensions during hypoxia: a comparison of laser Doppler and microsphere measurements of CBF. J Physiol (Lond). 2003;546(pt 3):869–878.

    Article  CAS  Google Scholar 

  17. Werner C., Kochs E. Monitoring of the central nervous system. Curr Opin Anaesthesiol. 1998;11:459–465.

    Article  CAS  Google Scholar 

  18. Lotgering FK, Gilbert RD, Longo LD Exercise responses in pregnant sheep: blood gases, temperatures, and fetal cardiovascular system. J Appl Physiol. 1983;55:842–850.

    Article  CAS  Google Scholar 

  19. Hoecker C., Nelle M., Poeschl J., Beedgen B., Linderkamp O. Caffeine impairs cerebral and intestinal blood flow velocity in preterm infants. Pediatrics. 2002;109:784–787.

    Article  Google Scholar 

  20. Saliba E., Autret E., Gold F., Bloc D., Pourcelet L., Laugier J. Effect of caffeine on cerebral blood flow velocity in preterm infants. Biol Neonate. 1989;56:198–203.

    Article  CAS  Google Scholar 

  21. Van Bel F, van de Bor M, Stijnen T, Baan J, Ruys JH. Does caffeine affect cerebral blood flow in the preterm infant? Acta Paediatr Scand. 1989;78:205–209.

    Article  Google Scholar 

  22. Conover W., Key TC, Resnik R. Maternal cardiovascular response to caffeine infusion in the pregnant ewe. Am J Obstet Gynecol. 1983;145:534–538.

    Article  CAS  Google Scholar 

  23. Salvador HS, Koos BJ Effects of regular and decaffeinated coffee on fetal breathing and heart rate. Am J Obstet Gynecol. 1989;160:1043–1047.

    Article  CAS  Google Scholar 

  24. Wilson SJ, Ayromlooi J., Errick JK Pharmacokinetic and hemodynamic effects of caffeine in the pregnant sheep. Obstet Gynecol. 1983;61:486–492.

    CAS  PubMed  Google Scholar 

  25. Golding J. Reproduction and caffeine consumption—a literature review. Early Hum Dev. 1995;43:1–14.

    Article  CAS  Google Scholar 

  26. Koos BJ, Maeda T., Jan C. Adenosine A1 and A2A receptors modulate sleep state and breathing in fetal sheep. J Appl Physiol. 2001;91:343–350.

    Article  CAS  Google Scholar 

  27. Mirmiran M. The importance of fetal/neonatal REM sleep. Eur J Obstet Gynecol Reprod Biol. 1986;21:283–291.

    Article  CAS  Google Scholar 

  28. Devoe LD, Murray C., Youssif A., Arnaud M. Maternal caffeine consumption and fetal behavior in normal third-trimester pregnancy. Am J Obstet Gynecol. 1993;168:1105–1112.

    Article  CAS  Google Scholar 

  29. McGowan J., Devoe LD, Searle N., Altman R. The effects of long- and short-term maternal caffeine ingestion on human fetal breathing and body movements in term gestations. Am J Obstet Gynecol. 1987;157:726–729.

    Article  CAS  Google Scholar 

  30. Bracken MB, Triche EW, Belanger K., Hellenbrand K., Leaderer BP Association of maternal caffeine consumption with decrements in fetal growth. Am J Epidemiol. 2003;157:456–466.

    Article  Google Scholar 

  31. Williams MA, Mittendorf R., Stubblefield PG, Lieberman E., Schoenbaum SC, Monson RR Cigarettes, coffee, and preterm premature rupture of the membranes. Am J Epidemiol. 1992;135:895–903.

    Article  CAS  Google Scholar 

  32. Chiaffarino F., Parazzini F., Chatenoud L., et al. Coffee drinking and risk of preterm birth. Eur J Clin Nutr. 2006;60:610–613.

    Article  CAS  Google Scholar 

  33. Fortier I., Marcoux S., Beaulac-Baillargeon L. Relation of caffeine intake during pregnancy to intrauterine growth retardation and preterm birth. Am J Epidemiol. 1993;137:931–940.

    Article  CAS  Google Scholar 

  34. Grosso LM, Triche EW, Belanger K., Benowitz NL, Holford T., Bracken MB Caffeine metabolites in umbilical cord blood, cytochrome P-450 1A2 activity, and intrauterine growth restriction. Am J Epidemiol. 2006;163:1035–1041.

    Article  Google Scholar 

  35. McDonald AD, Armstrong BG, Sloan M. Cigarette, alcohol, and coffee consumption and prematurity. Am J Public Health. 1992;82:87–90.

    Article  CAS  Google Scholar 

  36. Browne ML Maternal exposure to caffeine and risk of congenital anomalies: a systematic review. Epidemiology. 2006;17: 324–331.

    Article  Google Scholar 

  37. Barr HM, Streissguth AP Caffeine use during pregnancy and child outcome: a 7 year prospective study. Neurotoxicol Teratol. 1991;13:441–448.

    Article  CAS  Google Scholar 

  38. Schmidt B. Methylxanthine therapy for apnea of prematurity: evaluation of treatment benefits and risks at age 5 years in the international Caffeine for Apnea of Prematurity (CAP) trial. Biol Neonate. 2005;88:208–213.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence D. Longo MD.

Additional information

Supported by US Public Health Service grants HD/HL-03807 and HD-31226 to LDL.We thank Larkin Rieke, Douglas Hatran, and Shannon Bragg for technical assistance and Brenda Kreutzer for preparing the manuscript

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomimatsu, T., Lee, S.J., Pereyra Peña, J. et al. Maternal Caffeine Administration and Cerebral Oxygenation in Near-Term Fetal Sheep. Reprod. Sci. 14, 588–594 (2007). https://doi.org/10.1177/1933719107307717

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719107307717

Key words

Navigation