Planta Med 2009; 75(2): 113-120
DOI: 10.1055/s-0028-1088387
Pharmacology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

EGCG Inhibits Proliferation of Cardiac Fibroblasts in Rats with Cardiac Hypertrophy

Rui Sheng1 , 2 , Zhen-lun Gu1 , 2 , Mei-lin Xie1 , Wen-xuan Zhou1 , Ci-yi Guo1
  • 1Suzhou Institute of Chinese Materia Medica and Department of Pharmacology, Medical School of Suzhou University, Suzhou, P. R. China
  • 2Laboratory of Aging and Nervous Diseases, Medical School of Suzhou University, Suzhou, P. R. China
Further Information

Publication History

Received: November 21, 2007 Revised: September 1, 2008

Accepted: October 4, 2008

Publication Date:
18 December 2008 (online)

Abstract

This study was carried out in order to investigate the effects of epigallocatechin gallate (EGCG) on myocardial fibrosis and cell proliferation in cardiac hypertrophy. Cardiac hypertrophy was established in rats by abdominal aortic constriction, and EGCG at doses of 25, 50 and 100 mg/kg was administered intragastrically for 6 weeks. The results showed that in the rats with cardiac hypertrophy, EGCG at 25 – 100 mg/kg dose-dependently reduced heart weight indices, decreased atrial natriuretic polypeptide and endothelin levels in plasma, but increased nitrite (the oxidative product of NO) levels in the serum and in the myocardium. EGCG also reduced the hydroxyproline concentration and decreased the proliferating cell nuclear antigen expression in the hypertrophic myocardium. EGCG remarkably inhibited pressure overload-induced c-myc increase in Western blot analysis. In cultured newborn rat cardiac fibroblasts, treatment with EGCG at 12.5 – 200 mg/L for 6 – 48 h decreased cell proliferation induced by serum. EGCG at 12.5 – 100 mg/L dose-dependently inhibited cell proliferation and DNA synthesis of fibroblasts induced by angiotensin II (Ang II) at 1 μmol/L. EGCG also significantly increased nitrite levels in culture medium, and up-regulated inducible nitric oxide synthase protein expression if compared with the Ang II group. The inhibitory effect of EGCG on cell proliferation induced by Ang II was partly blocked by pretreatment with N ω-nitro-L-arginine methyl ester hydrochloride. These results suggest that EGCG inhibits the proliferation of cardiac fibroblasts both in vivo and in vitro, thereby preventing myocardial fibrosis in cardiac hypertrophy. EGCG might exert its cardiac protective action through induction of NO production.

References

  • 1 Olivetti G, Cigola E, Maestri R, Lagrasta C, Corradi D, Quaini F. Recent advances in cardiac hypertrophy.  Cardiovasc Res. 2000;  45 6-37
  • 2 Brown R D, Ambler S K, Mitchell M D, Long C S. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure.  Annu Rev Pharmacol Toxicol. 2005;  45 657-87
  • 3 Gupta M, Gupta M P, Arcilla R A, Zak R. Cardiomyocytes and non-muscle cells in cardiac hypertrophy: a molecular perspective.  Prog Ped Card. 1999;  9 183-97
  • 4 Chyu K Y, Babbidge S M, Zhao X, Dandillaya R, Rietveld A G, Yano J. Differential effects of green tea-derived catechin on developing versus established atherosclerosis in apolipoprotein E-null mice.  Circulation. 2004;  109 2448-53
  • 5 Townsend P A, Scarabelli T M, Pasini E, Gitti G, Menegazzi M, Suzuki H. Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis.  FASEB J. 2004;  18 1621-3
  • 6 Sheng R, Gu Z L, Xie M L, Guo C Y, Zhou W X. EGCG inhibits cardiomyocyte apoptosis in pressure overload induced cardiac hypertrophy rats and protects cardiomyocyte from oxidative stress.  Acta Pharmacol Sin. 2007;  28 191-201
  • 7 Li H L, Huang Y, Zhang C N, Liu G, Wei Y S, Wang A B. Epigallocathechin 3-gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways.  Free Radic Biol Med. 2006;  40 1756-75
  • 8 Shimoyama M, Hayashi D, Takimoto E, Zou Y Z, Oka T, Uozumi H. Calcineurin plays a critical role in pressure overload–induced cardiac hypertrophy.  Circulation. 1999;  100 2449-54
  • 9 Li J L, Li P, Feng X H, Li Z P, Hou R, Han C. Effects of lorsartan on pressure overload-induced cardiac gene expression profiling in rats.  Clin Exp Pharmacol Physiol. 2003;  30 827-32
  • 10 Puyo A M, Vega G W, Dellegrino de I A, Albornoz L E, Roson M L, Scagilia P. Atrial natriuretic peptide in two kidney-two clips renovascular hypertension in the rat.  Medicina. 1998;  58 165-70
  • 11 Modesti P A, Vanni S, Bertolozzi I, Cecinoni I, Polidori G, Paniccia R. Early sequence of cardiac adaptations and growth factor formation in pressure- and volume-overload hypertrophy.  Am J Physiol Heart Circ Physiol. 2000;  279 H976-85
  • 12 Yang X F, Wang N P, Lu W H, Zeng F D. Effects of Ginkgo biloba extract and tanshinone on cytochrome P-450 isozymes and glutathione transferase in rats.  Acta Pharmacol Sin. 2003;  24 1033-8
  • 13 Rhaleb N E, Peng H M, Harding P, Tayeh M, LaPointe M C, Carretero O A. Effect of N-acetyl-deryl-aspartyl-lysyl- proline on DNA and collagen synthesis in rat cardiac fibroblasts.  Hypertension. 2001;  37 827-32
  • 14 Heron M I, Rakusan K. Proliferating cell nuclear antigen (PCNA), detection of cellular proliferation in hypothyroid and hyperthyroid rat hearts.  J Mol Cell Cardiol. 1995;  27 1393-403
  • 15 Maino T A, Cao W, Lee J, Courtey R. Localization of proliferating cell nuclear antigen in the developing and mature rat heart cell.  Anat Rec. 1996;  245 677-84
  • 16 Cao Y, Gu Z L, Lin F, Han R, Qin Z H. Caspase-1 inhibitor Ac-YVAD-CHO attenuates quinolinic acid-induced increases in p53 and apoptosis in rat striatum.  Acta Pharmacol Sin. 2005;  26 150-4
  • 17 Watanabe T, Akishita M, He H, Miyahara Y, Nagano K, Nakaoka T. 17β-Estradiol inhibits cardiac fibroblast growth through both subtypes of estrogen receptor.  Biochem Biophys Res Commun. 2003;  311 454-9
  • 18 Horio T, Nishikimi T, Yoshihara F, Matsuo H, Takishita S, Kangawa K. Effects of adrenomedullin on cultured rat cardiac myocytes and fibroblasts.  Eur J Pharmacol. 1999;  382 1-9
  • 19 Takahashi K, Ouyang X, Komatsu K, Nakamura N, Hattori M, Baba A. Sodium tanshinone IIA sulfonate derived from Danshen (Salvia miltiorrhiza) attenuates hypertrophy induced by angiotensin II in cultured neonatal rat cardiac cells.  Biochem Pharmacol. 2002;  64 745-50
  • 20 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays.  J Immunol Methods. 1983;  65 55-63
  • 21 Wang S J, Wang X X, Yan J, Xie X D, Fan F H, Zhou X H. Resveratrol inhibits proliferation of cultured rat cardiac fibroblasts: Correlated with NO-cGMP signaling pathway.  Eur J Pharmacol. 2007;  567 26-35
  • 22 Kanekar S, Hirozanne T, Terracio L, Borg T K. Cardiac fibroblasts: form and function.  Cardiovasc Pathol. 1998;  7 127-33
  • 23 Neforo N, Inariba H, Inoue T, Kanayama Y, Takeda T. Expression of c-myc proto-oncogene in hearts and cultured smooth muscle cells of spontaneously hypertensive rats.  J Hypertens Suppl. 1988;  6 S128-30
  • 24 Izumo S, Nadal-Ginard B, Mahdavi V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload.  Proc Natl Acad Sci USA. 1988;  85 339-43
  • 25 Akers W S, Cross A, Speth R, Dwoskin L P, Cassis L A. Renin-angiotensin system and sympathetic nervous system in cardiac pressure-overload hypertrophy.  Am J Physiol Heart Circ Physiol. 2000;  279 H2797-806
  • 26 Brecher P. Angiotensin II and cardiac fibrosis.  Trends Cardiovasc Med. 1996;  6 193-8
  • 27 Hou J, Kato H, Cohen R A, Chobanian A V, Brecher P. Angiotensin II-induced cardiac fibrosis in the rat in increased by chronic inhibition of nitric oxide synthase.  J Clin Invest. 1995;  96 2469-77
  • 28 Kim N N, Villegas S, Summerour S R, Villarreal F J. Regulation of cardiac fibroblast excellular matrix production by bradykinin and nitric oxide.  J Mol Cell Cardiol. 1999;  31 457-66.
  • 29 Fan Y H, Zhao L Y, Zheng Q S, Dong H, Wang H C, Yang X D. Arginine vasopressin increases iNOS-NO system activity in cardiac fibroblasts through NF-κB activation and its relation with myocardial fibrosis.  Life Sci. 2007;  81 327-35
  • 30 Lorenz M, Wessler S, Follmann E, Michaelis W, Düsterhöft T, Baumann G. A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation.  J Biol Chem. 2004;  279 6190-5
  • 31 Lin Y L, Lin J K. (−)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-κB.  Mol Pharmacol. 1997;  52 465-72
  • 32 Song E K, Hur H, Han M K. Epigallocatechin gallate prevents autoimmune diabetes induced by multiple low doses of streptozotocin in mice.  Arch Pharm Res. 2003;  26 559-63
  • 33 Tian B, Liu J, Bitterman P, Bache R J. Angiotensin II modulates nitric oxide-induced cardiac fibroblast apoptosis by activation of AKT/PKB.  Am J Physiol Heart Circ Physiol. 2003;  285 H1105-12
  • 34 Siddiqui I A, Adhami V M, Afaq F, Ahmad N, Mukhtar H. Modulation of phosphatidylinositol-3-kinase/protein kinase B- and mitogen-activated protein kinase-pathways by tea polyphenols in human prostate cancer cells.  J Cell Biochem. 2004;  91 232-42
  • 35 Shankar S, Chen Q, Srivastava R K. Inhibition of PI3K/AKT and MEK/ERK pathways act synergistically to enhance antiangiogenic effects of EGCG through activation of FOXO transcription factor.  J Mol Signal. 2008;  3 7

Prof. Zhen-lun Gu

Suzhou Institute of Chinese Materia Medica and Department of Pharmacology

Laboratory of Aging and Nervous Diseases

Medical School of Suzhou University

215123 Suzhou

People’s Republic of China

Phone: +86-512-6519-0599

Fax: +86-512-6519-0599

Email: zhenlungu.2003@163.com

    >