Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chemokine receptor CXCR3 promotes colon cancer metastasis to lymph nodes

Abstract

Chemokines and their receptors are essential for leukocyte trafficking, and also implicated in cancer metastasis to specific organs. We have recently demonstrated that CXCR3 plays a critical role in metastasis of mouse melanoma cells to lymph nodes. Here, we show that some human colon cancer cell lines express CXCR3 constitutively. We constructed cells that expressed CXCR3 cDNA (‘DLD-1-CXCR3’), and compared with nonexpressing controls by rectal transplantation in nude mice. Although both cell lines disseminated to lymph nodes at similar frequencies at 2 weeks, DLD-1-CXCR3 expanded more rapidly than the control in 4 weeks. In 6 weeks, 59% of mice inoculated with DLD1-CXCR3 showed macroscopic metastasis in para-aortic lymph nodes, whereas only 14% of those with the control (P<0.05). In contrast, metastasis to the liver or lung was rare, and unaffected by CXCR3 expression. In clinical colon cancer samples, we found expression of CXCR3 in 34% cases, most of which had lymph node metastasis. Importantly, patients with CXCR3-positive cancer showed significantly poorer prognosis than those without CXCR3, or those expressing CXCR4 or CCR7. These results indicate that activation of CXCR3 with its ligands stimulates colon cancer metastasis preferentially to the draining lymph nodes with poorer prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Amichay D, Gazzinelli RT, Karupiah G, Moench TR, Sher A, Farber JM . (1996). Genes for chemokine MuMig and Crg-2 are induced in protozoan and viral infections in response to IFN-γ with patterns of tissue expression that suggest nonredundant roles in vivo. J Immunol 157: 4511–4520.

    CAS  PubMed  Google Scholar 

  • Balkwill F . (2004). Cacner and the chemokine network. Nat Rev Cancer 4: 540–550.

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Ouyang G, Bai X, Huang Z, Ma C, Liu M et al. (2004). Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via Akt/PKB pathway. Cancer Cell 5: 329–339.

    Article  CAS  PubMed  Google Scholar 

  • Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A et al. (1999). Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 5: 919–923.

    Article  CAS  PubMed  Google Scholar 

  • Chambers AF, Groom AC, MacDonald IC . (2002). Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2: 563–572.

    Article  CAS  PubMed  Google Scholar 

  • Cyster JG . (1999). Chemokines and cell migration in secondary lymphoid organs. Science 286: 2098–2101.

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra IM, Hulshof S, van der Valk P, Boddeke HW, Biber K . (2004). Activity of human adult microglia in response to CC chemokine ligand 21. J Immunol 172: 2744–2747.

    Article  CAS  PubMed  Google Scholar 

  • Dwinell MB, Lugering N, Eckmann L, Kagnoff MF . (2001). Regulated production of interferon-inducible T-cell chemoattractants by human intestinal epithelial cells. Gastroenterology 120: 49–59.

    Article  CAS  PubMed  Google Scholar 

  • Fidler IJ, Kripke ML . (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science 197: 893–895.

    Article  CAS  PubMed  Google Scholar 

  • Flatmark K, Maelandzmo GM, Martinsen M, Rasmussen H, Fodstad O . (2004). Twelve colorectal cancer cell lines exhibit highly variable growth and metastatic capacities in an orthotopic model in nude mice. Eur J Cancer 40: 1593–1598.

    Article  PubMed  Google Scholar 

  • Fleming JB, Cooper JS, Henson DE, Hutter RV, Kennedy BJ, Murphy GP et al. (1997). AJCC colon and rectum. In: Greene FL et al. (eds). AJCC Cancer Staging Manual. Lippincott-Raven Publishers: Philadelphia, PA, pp 83–90.

    Google Scholar 

  • Gattass CR, King LB, Luster AD, Ashwell JD . (1994). Constitutive expression of interferon γ-inducible protein 10 in lymphoid organs and inducible expression in T cells and thymocytes. J Exp Med 179: 1373–1378.

    Article  CAS  PubMed  Google Scholar 

  • Janatpour MJ, Hudak S, Sathe M, Sedgwick JD, McEvoy LM . (2001). Tumor necrosis factor-dependent segmental control of MIG expression by high endothelial venules in inflamed lymph nodes regulates monocyte recruitment. J Exp Med 193: 1375–1384.

    Article  Google Scholar 

  • Jordan NJ, Kolios G, Abbot SE, Sinai MA, Thompson DA, Petraki K et al. (1999). Expression of functional CXCR4 chemokine receptors on human colonic epithelial cells. J Clin Invest 104: 1061–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3: 537–549.

    Article  CAS  PubMed  Google Scholar 

  • Kashtan H, Rabau M, Mullen JBM, Wong AHC, Roder JC, Shpitz B et al. (1992). Intra-rectal injection of tumor cells: a novel animal model of rectal cancer. Surg Oncol 1: 251–256.

    Article  CAS  PubMed  Google Scholar 

  • Kawada K, Sonoshita M, Sakashita H, Takabayashi A, Yamaoka Y, Manabe T et al. (2004). Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res 64: 4010–4017.

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Takeuchi H, Lam ST, Turner RR, Wang HJ, Kuo C et al. (2005). Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol 23: 2744–2753.

    Article  CAS  PubMed  Google Scholar 

  • Luther SA, Tang HL, Hynman PL, Farr AG, Cyster JG . (2000). Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc Natl Acad Sci USA 97: 12694–12699.

    Article  CAS  PubMed  Google Scholar 

  • Mancardi S, Vecile E, Dusetti N, Carvo E, Stanta G, Burrone OR et al. (2003). Evidence of CXC, CC and C chemokine production by lymphatic endothelial cells. Immunology 108: 523–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A et al. (2004). Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat Immunol 5: 1260–1265.

    Article  CAS  PubMed  Google Scholar 

  • Mashino K, Sadanaga N, Yamaguchi H, Tanaka F, Ohta M, Shibuta K et al. (2002). Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res 62: 2937–2941.

    CAS  PubMed  Google Scholar 

  • Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50–56.

    Article  Google Scholar 

  • Ninomiya I, Terada I, Yoshizumi T, Takino T, Nagai N, Morita A et al. (2004). Anti-metastatic effect of capecitabine on human colon cancer xenografts in nude mouse rectum. Int J Cancer 112: 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Ochsenbein AF, Sierro S, Odermatt B, Pericin M, Karrer U, Hermans J et al. (2001). Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 411: 1058–1064.

    Article  CAS  PubMed  Google Scholar 

  • Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M et al. (2001). Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med 194: 1361–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrova TJ, Makinen T, Makela TP, Saarela J, Virtanen I, Ferrell RE et al. (2002). Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 21: 4593–4599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poggi A, Carosio R, Fenoglio D, Brenci S, Murdaca G, Setti M et al. (2004). Migration of Vδ1 and Vδ2T cells in response to CXCR3 and CXCR4 ligands in healthy donors and HIV-1-infected patients: competition by HIV-1 Tat. Blood 103: 2205–2213.

    Article  CAS  PubMed  Google Scholar 

  • Robledo MM, Barolom RA, Longo N, Rodríguez-Frade JM, Mellado M, Longo I et al. (2001). Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. J Biol Chem 276: 45098–45105.

    Article  CAS  PubMed  Google Scholar 

  • Saeki H, Moore AM, Brown MJ, Hwang ST . (1999). Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 162: 2472–2475.

    CAS  PubMed  Google Scholar 

  • Schimanski CC, Schwald S, Simiantonaki N, Jayasinghe C, Gonner U, Wilsberg V et al. (2005). Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res 11: 1743–1750.

    Article  CAS  PubMed  Google Scholar 

  • Soejima K, Rollins BJ . (2001). A functional IFN-γ-inducible protein-10/CXCL10-specific receptor expressed by epthelial and endothelial cells that is neither CXCR3 nor clycosaminoglycan. J Immunol 167: 6576–6582.

    Article  CAS  PubMed  Google Scholar 

  • Soto H, Wang W, Strieter RM, Copeland NG, Gilbert DJ, Jenkins NA et al. (1998). The CC chemokine 6Ckine binds the CXC chemokine receptor CXCR3. Proc Natl Acad Sci USA 95: 8205–8210.

    Article  CAS  PubMed  Google Scholar 

  • Tannenbaum CS, Tubbs R, Armstrong D, Finke JH, Bukowski RM, Hamilton TA . (1998). The CXC chemokine IP-10 and Mig are necessary for IL-12-mediated regression of the mouse RENCA tumor. J Immunol 161: 927–932.

    CAS  PubMed  Google Scholar 

  • Trentin L, Agostini C, Facco M, Piazza F, Perin A, Siviero M et al. (1999). The chemokine receptor CXCR3 is expressed on malignant B cells and mediates chemotaxis. J Clin Invest 104: 115–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsumi S, Kuwano H, Morinaga N, Shimura T, Asao T . (2001). Animal model of para-aortic lymph node metastasis. Cancer Lett 169: 77–85.

    Article  CAS  PubMed  Google Scholar 

  • Vicari AP, Ait-Yahita S, Chemin K, Mueller A, Zlotnick A, Caux C . (2000). Antitumor effects of the mouse chemokine 6Ckine/SLC through angiostatic and immunological mechanism. J Immunol 165: 1992–2000.

    Article  CAS  PubMed  Google Scholar 

  • Vlahakis SR, Villasis-Keever A, Gomez T, Venegas M, Vlahakis N, Paya CV . (2002). G protein-coupled chemokine receptors induce both survival and apoptotic signaling pathways. J Immunol 169: 5546–5554.

    Article  CAS  PubMed  Google Scholar 

  • von Andrian UH, Mempel TR . (2003). Homing and cellular traffic in lymph nodes. Nat Rev Immunol 3: 867–878.

    Article  CAS  PubMed  Google Scholar 

  • Walser TC, Rifat S, Ma X, Kundu N, Ward C, Goloubeva O et al. (2006). Antagonism of CXCR3 inhibits lung metastasis in a murine model of metastatic breast cancer. Cancer Res 66: 7701–7707.

    Article  CAS  PubMed  Google Scholar 

  • Wiley HE, Gonzalez EB, Maki W, Wu M, Hwang ST . (2001). Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 93: 1638–1643.

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama H, Narumi S, Zhang Y, Murai M, Baggiolini M, Lanzavecchia A et al. (2002). Pivotal role of dendritic cell-derived CXCL10 in the retention of T helper cell 1 lymphocytes in secondary lymph nodes. J Exp Med 195: 1257–1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeelenberg IS, Ruuls-Van Stalle L, Roos E . (2003). The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastasis. Cancer Res 62: 3833–3839.

    Google Scholar 

  • Zhang R, Zhang H, Zhu W, Pardee AB, Coffey Jr RJ, Liang P et al. (1997). Mob-1, a Ras target gene, is overexpressed in colorectal cancer. Oncogene 14: 1607–1610.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Masahiro Aoki and Takanori Kitamura for fruitful discussion and Hiromi Kikuchi for technical assistance. We also thank Drs T Kitamura and M Onishi (University of Tokyo) for retroviral vector pMX. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M Taketo.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawada, K., Hosogi, H., Sonoshita, M. et al. Chemokine receptor CXCR3 promotes colon cancer metastasis to lymph nodes. Oncogene 26, 4679–4688 (2007). https://doi.org/10.1038/sj.onc.1210267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210267

Keywords

This article is cited by

Search

Quick links