Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Millennium Article
  • Published:

Cytokine and growth factor involvement in schizophrenia—support for the developmental model

Abstract

Medical treatment with various cytokines can provoke psychiatric symptoms. Conversely, psychiatric patients can display abnormalities in cytokine and neurotrophic factor expression. Such observations have pointed to the potential contribution of cytokines and growth factors to schizophrenic pathology and/or etiology. The cellular targets of the relevant factors and the nature of their actions remain to be explored in mental illness, however. Recent physiological studies demonstrate that cytokines and neurotrophic factors can markedly influence synaptic transmission and plasticity upon acute or chronic application. Moreover, many of the molecular alterations observed in the schizophrenic brain are consistent with abnormalities in cytokine and neurotrophic factor regulation of these molecules. In this review, we summarize these molecular pathology findings for schizophrenia and highlight the neurodevelopmental activities of cytokines and neurotrophic factors that may contribute to the etiology or pathology of this illness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Karayiorgou M, Gogos JA . A turning point in schizophrenia genetics Neuron 1997; 19: 967–979

    CAS  PubMed  Google Scholar 

  2. Gottesman II, Shields JA . Critical review of recent adoption, twin, and family studies of schizophrenia: behavioral genetics perspectives Schizophr Bull 1976; 2: 360–401

    CAS  PubMed  Google Scholar 

  3. Mortensen PB, Pedersen CB, Westergaard T, Wohlfahrt J, Ewald H, Mors O, et al. Effects of family history and place and season of birth on the risk of schizophrenia N Engl J Med 1999; 340: 603–608

    CAS  PubMed  Google Scholar 

  4. McNeil TF . Perinatal risk factors and schizophrenia: selective review and methodological concerns Epidemiol Rev 1995; 17: 107–112

    CAS  PubMed  Google Scholar 

  5. O'Callaghan E, Sham P, Takei N, Glover G, Murray RM . Schizophrenia after prenatal exposure to 1957 A2 influenza epidemic Lancet 1991; 337: 1248–1250

    CAS  PubMed  Google Scholar 

  6. Susser E, Neugebauer R, Hoek HW, Brown AS, Lin S, Labovitz D et al. Schizophrenia after prenatal famine. Further evidence Arch Gen Psychiatry 1996; 53: 25–31

    CAS  PubMed  Google Scholar 

  7. Pulver AE, Sawyer JW, Childs B . The association between season of birth and the risk for schizophrenia Am J Epidemiol 1981; 114: 735–749

    CAS  PubMed  Google Scholar 

  8. Weinberger DR . Implication of normal brain development for the pathogenesis of schizophrenia Arch Gen Psychiatry 1987; 44: 660–669

    CAS  PubMed  Google Scholar 

  9. Waddington JL . Schizophrenia: developmental neuroscience and pathobiology Lancet 1993; 341: 531–536

    CAS  PubMed  Google Scholar 

  10. Bogerts B . Recent advances in the neuropathology of schizophrenia Schizophr Bull 1993; 19: 431–445

    CAS  PubMed  Google Scholar 

  11. Weinberger DR . From neuropathology to neurodevelopment Lancet 1995; 346: 552–557

    CAS  PubMed  Google Scholar 

  12. Muller N, Ackenheil M . Psychoneuroimmunology and the cytokine action in the CNS: implications for psychiatric disorders Prog Neuropsychopharmacol Biol Psychiatry 1998; 22: 1–33

    CAS  PubMed  Google Scholar 

  13. Miyan JA, Broome CS, Afan AM . Coordinated host defense through an integration of the neural, immune and haemopoietic systems Domest Anim Endocrinol 1998; 15: 297–304

    CAS  PubMed  Google Scholar 

  14. Malek-Ahmadi P . Neuropsychiatric aspects of cytokines research: an overview Neurosci Biobehav Rev 1996; 20: 359–365

    CAS  PubMed  Google Scholar 

  15. Akbarian S, Bunney WE Jr, Potkin SG, Wigal SB, Hagman JO, Sandman CA et al. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development Arch Gen Psychiatry 1993; 50: 169–177

    CAS  PubMed  Google Scholar 

  16. Akbarian S, Vinuela A, Kim JJ, Potkin SG, Bunney WE Jr, Jones EG . Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalocortical development Arch Gen Psychiatry 1993; 50: 178–187

    CAS  PubMed  Google Scholar 

  17. Benes FM . Neurobiological investigations in cingulate cortex of schizophrenic brain Schizophr Bull 1993; 19: 537–549

    CAS  PubMed  Google Scholar 

  18. Shelton RC, Karson CN, Doran AR, Pickar D, Bigelow LB, Weinberger DR . Cerebral structural pathology in schizophrenia: evidence for a selective prefrontal cortical defect Am J Psychiatry 1988; 145: 154–163

    CAS  PubMed  Google Scholar 

  19. Conrad AJ, Scheibel AB . Schizophrenia and the hippocampus: the embryological hypothesis extended Schizophr Bull 1987; 13: 577–587

    CAS  PubMed  Google Scholar 

  20. Jakob H, Beckmann H . Circumscribed malformation and nerve cell alterations in the entorhinal cortex of schizophrenics. Pathogenetic and clinical aspects J Neural Transm Gen Sect 1994; 98: 83–106

    CAS  PubMed  Google Scholar 

  21. Roberts GW . Schizophrenia: the cellular biology of a functional psychosis Trends Neurosci 1990; 13: 207–211

    CAS  PubMed  Google Scholar 

  22. Harrison PJ . The neuropathology of schizophrenia. A critical review of the data and their interpretation Brain 1999; 122: 593–624

    PubMed  Google Scholar 

  23. Duncan GE, Sheitman BB, Lieberman JA . An integrated view of pathophysiological models of schizophrenia Brain Res Rev 1999; 29: 250–264

    CAS  PubMed  Google Scholar 

  24. Weinberger DR . Cell biology of the hippocampal formation in schizophrenia Biol Psychiatry 1999; 45: 395–402

    CAS  PubMed  Google Scholar 

  25. Ross CA, Pearlson GD . Schizophrenia, the heteromodal association neocortex and development: potential for a neurogenetic approach Trends Neurosci 1996; 19: 171–176

    CAS  PubMed  Google Scholar 

  26. Jones P, Murray RM . The genetics of schizophrenia is the genetics of neurodevelopment Br J Psychiatry 1991; 158: 615–623

    CAS  PubMed  Google Scholar 

  27. Eastwood SL, Burnet PW, Harrison PJ . Altered synaptophysin expression as a marker of synaptic pathology in schizophrenia Neuroscience 1995; 66: 309–319

    CAS  PubMed  Google Scholar 

  28. Eastwood SL, Harrison PJ . Decreased synaptophysin in the medial temporal lobe in schizophrenia demonstrated using immunoautoradiography Neuroscience 1995; 69: 339–343

    CAS  PubMed  Google Scholar 

  29. Glantz LA, Lewis DA . Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia. Regional and diagnostic specificity Arch Gen Psychiatry 1997; 54: 660–669

    CAS  PubMed  Google Scholar 

  30. Perrone-Bizzozero NI, Sower AC, Bird ED, Benowitz LI, Ivins KJ, Neve RL . Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia Proc Natl Acad Sci USA 1996; 93: 14182–14187

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gabriel SM, Haroutunian V, Powchik P, Honer WG, Davidson M, Davies P et al. Increased concentrations of presynaptic proteins in the cingulate cortex of subjects with schizophrenia Arch Gen Psychiatry 1997; 54: 559–566

    CAS  PubMed  Google Scholar 

  32. Browning MD, Dudek EM, Rapier JL, Leonard S, Freedman R . Significant reductions in synapsin but not synaptophysin specific activity in the brains of some schizophrenics Biol Psychiatry 1993; 34: 529–535

    CAS  PubMed  Google Scholar 

  33. Stevens JR . Abnormal reinnervation as a basis for schizophrenia: a hypothesis Arch Gen Psychiatry 1992; 49: 238–243

    CAS  PubMed  Google Scholar 

  34. Anderson SA, Volk DW, Lewis DA . Increased density of microtubule associated protein 2-immunoreactive neurons in the prefrontal white matter of schizophrenic subjects Schizophr Res 1996; 19: 111–119

    CAS  PubMed  Google Scholar 

  35. Arnold SE, Lee VM, Gur RE, Trojanowski JQ . Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia Proc Natl Acad Sci USA 1991; 88: 10850–10854

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Barbeau D, Liang JJ, Robitalille Y, Quirion R, Srivastava LK . Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains Proc Natl Acad Sci USA 1995; 92: 2785–2789

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Honer WG, Falkai P, Young C, Wang T, Xie J, Bonner J et al. Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia Neuroscience 1997; 78: 99–110

    CAS  PubMed  Google Scholar 

  38. Luthl A, Laurent JP, Figurov A, Muller D, Schachner M . Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM Nature 1994; 372: 777–779

    CAS  Google Scholar 

  39. Hoffman KB . The relationship between adhesion molecules and neuronal plasticity Cell Mol Neurobiol 1998; 18: 461–475

    CAS  PubMed  Google Scholar 

  40. Glenthoj BY, Hemmingsen R . Transmitter dysfunction during the process of schizophrenia Acta Psychiatr Scand Suppl 1999; 395: 105–112

    CAS  PubMed  Google Scholar 

  41. Nemeroff CB, Youngblood WW, Manberg PJ, Prange AJ Jr, Kizer JS . Regional brain concentrations of neuropeptides in Huntington's chorea and schizophrenia Science 1983; 221: 972–975

    CAS  PubMed  Google Scholar 

  42. Ferrier IN, Roberts GW, Crow TJ, Johnstone EC, Owens DG, Lee YC et al. Reduced cholecystokinin-like and somatostatin-like immunoreactivity in limbic lobe is associated with negative symptoms in schizophrenia Life Sci 1983; 33: 475–482

    CAS  PubMed  Google Scholar 

  43. Eastwood SL, McDonald B, Burnet PW, Beckwith JP, Kerwin RW, Harrison PJ . Decreased expression of mRNAs encoding non-NMDA glutamate receptors GluR1 and GluR2 in medial temporal lobe neurons in schizophrenia Mol Brain Res 1995; 29: 211–223

    CAS  PubMed  Google Scholar 

  44. Eastwood SL, Burnet PW, Harrison PJ . GluR2 glutamate receptor subunit flip and flop isoforms are decreased in the hippocampal formation in schizophrenia: a reverse transcriptase polymerase chain reaction (RT-PCR) study Mol Brain Res 1997; 44: 92–98

    CAS  PubMed  Google Scholar 

  45. Harrison PJ, McLaughlin D, Kerwin RW . Decreased hippocampal expression of a glutamate receptor gene in schizophrenia Lancet 1991; 337: 450–452

    CAS  PubMed  Google Scholar 

  46. Porter RH, Eastwood SL, Harrison PJ . Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia Brain Res 1997; 751: 217–231

    CAS  PubMed  Google Scholar 

  47. Eastwood SL, Kerwin RW, Harrison PJ . Immunoautoradiographic evidence for a loss of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-preferring non N-methyl-D-aspartate glutamate receptors within the medial temporal lobe in schizophrenia Biol Psychiatry 1997; 41: 636–643

    CAS  PubMed  Google Scholar 

  48. Benes FM, Vincent SL, Alsterberg G, Bird ED, SanGiovanni JP . Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics J Neurosci 1992; 12: 924–929

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Benes FM, Vincent SL, Marie A, Khan Y . Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects Neuroscience 1996; 75: 1021–1031

    CAS  PubMed  Google Scholar 

  50. Hanada S, Mita T, Nishino N, Tanaka C . [3H]muscimol binding sites increased in autopsied brains of chronic schizophrenics Life Sci 1987; 40: 259–266

    CAS  PubMed  Google Scholar 

  51. Sokolov BP . Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of ‘neuroleptic-free’ schizophrenics: evidence on reversible up-regulation by typical neuroleptics J Neurochem 1998; 71: 2454–2464

    CAS  PubMed  Google Scholar 

  52. Croll SD, Wiegand SJ, Anderson KD, Lindsay RM, Nawa H . Regulation of neuropeptides in adult rat forebrain by the neurotrophins BDNF and NGF Eur J Neurosci 1994; 6: 1343–1353

    CAS  PubMed  Google Scholar 

  53. Mizuno K, Carnahan J, Nawa H . Brain-derived neurotrophic factor promotes differentiation of striatal GABAergic neurons Dev Biol 1994; 165: 243–256

    CAS  PubMed  Google Scholar 

  54. Nawa H, Bessho Y, Carnahan J, Nakanishi S, Mizuno K . Regulation of neuropeptide expression in cultured cerebral cortical neurons by brain-derived neurotrophic factor J Neurochem 1993; 60: 772–775

    CAS  PubMed  Google Scholar 

  55. Nawa H, Pelleymounter MA, Carnahan J . Intraventricular administration of BDNF increases neuropeptide expression in newborn rat brain J Neurosci 1994; 14: 3751–3765

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nawa H, Carnahan J, Gall C . BDNF protein measured by a novel enzyme immunoassay in normal brain and after seizure: partial disagreement with mRNA levels Eur J Neurosci 1995; 7: 1527–1535

    CAS  PubMed  Google Scholar 

  57. Narisawa-Saito M, Carnahan J, Araki K, Yamaguchi T, Nawa H . Brain-derived neurotrophic factor regulates the expression of AMPA receptor proteins in neocortical neurons Neuroscience 1999; 88: 1009–1014

    CAS  PubMed  Google Scholar 

  58. Narisawa-Saito M, Silva AJ, Yamaguchi T, Hayashi T, Yamamoto T, Nawa H . Growth factor-mediated fyn signaling regulates AMPA receptor expression in rodent neocortical neurons Proc Natl Acad Sci USA 1999; 96: 2461–2466

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Xiong H, Yamada K, Han D, Nabeshima T, Enikolopov G, Carnahan J et al. Mutual regulation between the intercellular messengers nitric oxide and brain-derived neurotrophic factor in rodent neocortical neurons Eur J Neurosci 1999; 11: 1567–1576

    CAS  PubMed  Google Scholar 

  60. Maffei L, Berardi N, Domenici L, Parisi V, Pizzorusso T . Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats J Neurosci 1992; 12: 4651–4662

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cabelli RJ, Hohn A, Shatz CJ . Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF Science 1995; 267: 1662–1666

    CAS  PubMed  Google Scholar 

  62. McAllister AK, Lo DC, Katz LC . Neurotrophins regulate dendritic growth in developing visual cortex Neuron 1995; 15: 791–803

    CAS  PubMed  Google Scholar 

  63. Prakash N, Cohen-Cory S, Frostig RD . RAPID and opposite effects of BDNF and NGF on the functional organization of the adult cortex in vivo Nature 1996; 381: 702–706

    CAS  PubMed  Google Scholar 

  64. Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney WE Jr, Jones EG . Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients Arch Gen Psychiatry 1996; 53: 425–436

    CAS  PubMed  Google Scholar 

  65. Chun JJ, Nakamura MJ, Shatz CJ . Transient cells of the developing mammalian telencephalon are peptide-immunoreactive neurons Nature 1987; 325: 617–620

    CAS  PubMed  Google Scholar 

  66. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE Jr et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics Arch Gen Psychiatry 1995; 52: 258–266

    CAS  PubMed  Google Scholar 

  67. Tueting P, Costa E, Dwivedi Y, Guidotti A, Impagnatiello F, Manev R et al. The phenotypic characteristics of heterozygous reeler mouse Neuroreport 1999; 10: 1329–1334

    CAS  PubMed  Google Scholar 

  68. Ringstedt T, Linnarsson S, Wagner J, Lendahl U, Kokaia Z, Arenas E et al. BDNF regulates reelin expression and Cajal–Retzius cell development in the cerebral cortex Neuron 1998; 21: 305–315

    CAS  PubMed  Google Scholar 

  69. Ringstedt T, Linnarsson S, Wagner J, Lendahl U, Kokaia Z, Arenas E et al. BDNF regulates reelin expression and Cajal–Retzius cell development in the cerebral cortex Neuron 1998; 21: 305–315

    CAS  PubMed  Google Scholar 

  70. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG et al. A decrease of reelin expression as a putative vulnerability factor in schizophrenia Proc Natl Acad Sci USA 1998; 22: 15718–15723

    Google Scholar 

  71. Sasaki T, Dai XY, Kuwata S, Fukuda R, Kunugi H, Hattori M et al. Brain-derived neurotrophic factor gene schizophrenia in Japanese subjects Am J Med Genet 1997; 74: 443–444

    CAS  PubMed  Google Scholar 

  72. Khan AS, Freedman R, Byerley W, Leonard S . Temperature gradient gel electrophoresis analysis of the beta-NGF gene in schizophrenia J Psychiatry Neurosci 1995; 20: 199–209

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nanko S, Hattori M, Kuwata S, Sasaki T, Fukuda R, Dai XY et al. Neurotrophin-3 gene polymorphism associated with schizophrenia Acta Psychiatr Scand 1994; 89: 390–392

    CAS  PubMed  Google Scholar 

  74. Thome J, Kornhuber J, Baumer A, Rosler M, Beckmann H, Riederer P . Association between a null mutation in the human ciliary neurotrophic factor (CNTF) gene and increased incidence of psychiatric diseases? Neurosci Lett 1996; 203: 109–110

    CAS  PubMed  Google Scholar 

  75. Prolo P, Licinio J . Cytokines in affective disorders and schizophrenia: new clinical and genetic findings Mol Psychiatry 1999; 4: 109–111

    CAS  PubMed  Google Scholar 

  76. Takahashi M, Shirakawa O, Toyooka K, Kitamura N, Hashimoto T, Maeda K et al. Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients Mol Psychiatry 2000; 5: 293–300

    CAS  PubMed  Google Scholar 

  77. Schramm M, Falkai P, Feldmann N, Knable MB, Bayer TA . Reduced tyrosine kinase receptor C mRNA levels in the frontal cortex of patients with schizophrenia Neurosci Lett 1998; 257: 65–68

    CAS  PubMed  Google Scholar 

  78. Toyooka K, Shirakawa O, Kitamura N, Hashimoto T, Maeda K, Wakabayashi K et al. Large individual variations in BDNF content in human brain and serum Soc Neurosci Abstr 1999; 29: 200.11

    Google Scholar 

  79. Takahashi M, Hayashi S, Kakita A, Wakabayashi K, Fukuda M, Kameyama S et al. Patients with temporal lobe epilepsy show an increase in brain-derived neurotrophic factor protein and its correlation with neuropeptide Y Brain Res 1999; 818: 579–582

    CAS  PubMed  Google Scholar 

  80. Smith MA, Makino S, Kvetnansky R, Post RM . Effects of stress on neurotrophic factor expression in the rat brain Ann N Y Acad Sci 1995; 771: 234–239

    CAS  PubMed  Google Scholar 

  81. Wassink TH, Nelson JJ, Crowe RR, Andreasen NC . Heritability of BDNF alleles and their effect on brain morphology in schizophrenia Am J Med Genet 1999; 88: 724–728

    CAS  PubMed  Google Scholar 

  82. Arinami T, Toru M . No evidence for association between CNTF null mutant allele and schizophrenia Br J Psychiatry 1996; 169: 253

    CAS  PubMed  Google Scholar 

  83. Dawson E, Powell JF, Sham PC, Nothen M, Crocq MA, Propping P et al. An association study of a neurotrophin-3 (NT-3) gene polymorphism with schizophrenia Acta Psychiatr Scand 1995; 92: 425–428

    CAS  PubMed  Google Scholar 

  84. Katila H, Hanninen K, Hurme M . Polymorphisms of the interleukin-1 gene complex in schizophrenia Mol Psychiatry 1999; 4: 179–181

    CAS  PubMed  Google Scholar 

  85. Patterson PH, Nawa H . Neuronal differentiation factors/cytokines and synaptic plasticity Cell 1993; 72 Suppl: 123–137

    CAS  PubMed  Google Scholar 

  86. Licinio J, Wong, M-L . Pathways and mechanisms for cytokine signalling of the central nervous system J Clin Invest 1997; 100: 2941–2947

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Stoop R, Poo MM . Synaptic modulation by neurotrophic factors Prog Brain Res 1996; 109: 359–364

    CAS  PubMed  Google Scholar 

  88. Schuman EM . Neurotrophin regulation of synaptic transmission Curr Opin Neurobiol 1999; 9: 105–109

    CAS  PubMed  Google Scholar 

  89. Jankowsky JL, Patterson PH . Cytokine and growth factor involvement in long term potentiation Mol Cell Neurosci 1999; 14: 273–286

    CAS  PubMed  Google Scholar 

  90. Nitta T . Cytokine gene expression within the central nervous system Cell Mol Neurobiol 1998; 18: 703–708

    CAS  PubMed  Google Scholar 

  91. Jankowsky JL, Patterson PH . The role of cytokines and growth factors in seizure and its sequelae Progr Neurobiol 2000 (in press

  92. Yates WR, Gleason O . Hepatitis C and depression Depress Anxiety 1998; 7: 188–193

    CAS  PubMed  Google Scholar 

  93. Pavol MA, Meyers CA, Rexer JL, Valentine AD, Mattis PJ, Talpaz M . Pattern of neurobehavioral deficits associated with interferon alfa therapy for leukemia Neurology 1995; 45: 947–950

    CAS  PubMed  Google Scholar 

  94. Licinio J, Wong M-L . The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection Mol Psychiatry 1999; 4: 317–327

    CAS  PubMed  Google Scholar 

  95. Denicoff KD, Rubinow DR, Papa MZ, Simpson C, Seipp CA, Lotze MT et al. The neuropsychiatric effects of treatment with interleukin-2 and lymphokine-activated killer cells Ann Intern Med 1987; 107: 293–300

    CAS  PubMed  Google Scholar 

  96. Rafalowska J . HIV-1-infection in the CNS. A pathogenesis of some neurological syndromes in the light of recent investigations Folia Neuropathol 1998; 36: 211–216

    CAS  PubMed  Google Scholar 

  97. Lapchak PA, Araujo DM, Hefti F . Systemic interleukin-1 beta decreases brain-derived neurotrophic factor messenger RNA expression in the rat hippocampal formation Neuroscience 1993; 53: 297–301

    CAS  PubMed  Google Scholar 

  98. Xiong H, Narisawa-Saito M, Jourdi H, Takei N, Nawa H . The glutamate receptor-mediated regulation of brain-derived neurotrophic factor production by cytokines in central nervous system Soc Neurosci Abstr 1999; 25: 407.10

    Google Scholar 

  99. Lindholm D, Heumann R, Meyer M, Thoenen H . Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve Nature 1987; 330: 658–659

    CAS  PubMed  Google Scholar 

  100. Heese K, Hock C, Otten U . Inflammatory signals induce neurotrophin expression in human microglial cells J Neurochem 1998; 70: 699–707

    CAS  PubMed  Google Scholar 

  101. Fatemi SH, Emamian ES, Kist D, Sidwell RW, Nakajima K, Akhter P et al. Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice Mol Psychiatry 1999; 4: 145–154

    CAS  PubMed  Google Scholar 

  102. Davis KL, Kahn RS, Ko G, Davidson M . Dopamine in schizophrenia: a review and reconceptualization Am J Psychiatry 1991; 148: 1474–1486

    CAS  PubMed  Google Scholar 

  103. Toru M, Kurumaji A, Ishimaru M . Excitatory amino acids: implications for psychiatric disorders research Life Sci 1994; 55: 1683–1699

    CAS  PubMed  Google Scholar 

  104. Rutherford LC, Nelson SB, Turrigiano GG . BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses Neuron 1998; 21: 521–530

    CAS  PubMed  Google Scholar 

  105. Hyman C, Juhasz M, Jackson C, Wright P, Ip NY, Lindsay RM . Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon J Neurosci 1994; 14: 335–347

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Altar CA, Boylan CB, Jackson C, Hershenson S, Miller J, Wiegand SJ et al. Brain-derived neurotrophic factor augments rotational behavior and nigrostriatal dopamine turnover in vivo Proc Natl Acad Sci USA 1992; 89: 11347–11351

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Du X, Stull ND, Iacovitti L . Brain-derived neurotrophic factor works coordinately with partner molecules to initiate tyrosine hydroxylase expression in striatal neurons Brain Res 1995; 680: 229–233

    CAS  PubMed  Google Scholar 

  108. Lipton SA, Kater SB . Neurotransmitter regulation of neuronal outgrowth, plasticity and survival Trends Neurosci 1989; 12: 265–270

    CAS  PubMed  Google Scholar 

  109. Mattson MP, Lee RE, Adams ME, Guthrie PB, Kater SB . Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry Neuron 1988; 1: 865–876

    CAS  PubMed  Google Scholar 

  110. McDonald JW, Johnston, MV . Physiological and pathophysiological roles of excitatory amino acids during central nervous system development Brain Res Rev 1990; 15: 41–70

    PubMed  Google Scholar 

  111. Otmakhova NA, Lisman JE . D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses J Neurosci 1996; 16: 7478–7486

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhu H, Wu F, Schacher S . Site-specific and sensory neuron-dependent increases in postsynaptic glutamate sensitivity accompany serotonin-induced long-term facilitation at Aplysia sensorimotor synapses J Neurosci 1997; 17: 4976–4986

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Poltorak M, Wright R, Hemperly JJ, Torrey EF, Issa F, Wyatt RJ et al. Monozygotic twins discordant for schizophrenia are discordant for N-CAM and L1 in CSF Brain Res 1997; 751: 152–154

    CAS  PubMed  Google Scholar 

  114. Cotter D, Kerwin R, Doshi B, Martin CS, Everall IP . Alterations in hippocampal non-phosphorylated MAP2 protein expression in schizophrenia Brain Res 1997; 765: 238–246

    CAS  PubMed  Google Scholar 

  115. Virgo L, Humphries C, Mortimer A, Barnes T, Hirsch S, de Belleroche J . Cholecystokinin messenger RNA deficit in frontal and temporal cerebral cortex in schizophrenia Biol Psychiatry 1995; 37: 694–701

    CAS  PubMed  Google Scholar 

  116. Breese CR, Freedman R, Leonard SS . Glutamate receptor subtype expression in human postmortem brain tissue from schizophrenics and alcohol abusers Brain Res 1995; 674: 82–90

    CAS  PubMed  Google Scholar 

  117. Akbarian S, Sucher NJ, Bradley D, Tafazzoli A, Trinh D, Hetrick WP et al. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics J Neurosci 1996; 16: 19–30

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Huntsman MM, Tran BV, Potkin SG, Bunney WE Jr, Jones EG . Altered ratios of alternatively spliced long and short gamma2 subunit mRNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics Proc Natl Acad Sci USA 1998; 95: 15066–15071

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Harrington KA, Augood SJ, Faull RL, McKenna PJ, Emson PC . Dopamine D1 receptor, D2 receptor, proenkephalin A and substance P gene expression in the caudate nucleus of control and schizophrenic tissue: a quantitative cellular in situ hybridisation study Mol Brain Res 1995; 33: 333–342

    CAS  PubMed  Google Scholar 

  120. Schmauss C, Haroutunian V, Davis KL, Davidson M . Selective loss of dopamine D3-type receptor mRNA expression in parietal and motor cortices of patients with chronic schizophrenia Proc Natl Acad Sci USA 1993; 90: 8942–8946

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Schmauss C . Enhanced cleavage of an atypical intron of dopamine D3-receptor pre-mRNA in chronic schizophrenia J Neurosci 1996; 16: 7902–7909

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Mulcrone J, Kerwin RW . No difference in the expression of the D4 gene in post-mortem frontal cortex from controls and schizophrenics Neurosci Lett 1996; 219: 163–166

    CAS  PubMed  Google Scholar 

  123. Roberts DA, Balderson D, Pickering-Brown SM, Deakin JF, Owen F . The relative abundance of dopamine D4 receptor mRNA in post mortem brains of schizophrenics and controls Schizophr Res 1996; 20: 171–174

    CAS  PubMed  Google Scholar 

  124. Stefanis NC, Bresnick JN, Kerwin RW, Schofield WN, McAllister G . Elevation of D4 dopamine receptor mRNA in postmortem schizophrenic brain Mol Brain Res 1998; 53: 112–119

    CAS  PubMed  Google Scholar 

  125. Burnet PW, Eastwood SL, Harrison PJ . 5-HT1A and 5-HT2A receptor mRNAs and binding site densities are differentially altered in schizophrenia Neuropsychopharmacology 1996; 15: 442–455

    CAS  PubMed  Google Scholar 

  126. Hefti F, Hartikka J, Eckenstein F, Gnahn H, Heumann R, Schwab M . Nerve growth factor increases choline acetyltransferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons Neuroscience 1985; 14: 55–68

    CAS  PubMed  Google Scholar 

  127. Marty S, Carroll P, Cellerino A, Castren E, Staiger V, Thoenen H et al. Brain-derived neurotrophic factor promotes the differentiation of various hippocampal nonpyramidal neurons, including Cajal–Retzius cells, in organotypic slice cultures J Neurosci 1996; 16: 675–687

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Pappas IS, Parnavelas JG . Neurotrophins and basic fibroblast growth factor induce the differentiation of calbindin-containing neurons in the cerebral cortex Exp Neurol 1997; 144: 302–314

    CAS  PubMed  Google Scholar 

  129. Xiong H, Yamada K, Han D, Nabeshima T, Enikolopov G, Carnahan J et al. Mutual regulation between the intercellular messengers nitric oxide and brain-derived neurotrophic factor in rodent neocortical neurons Eur J Neurosci 1999; 11: 1567–1576

    CAS  PubMed  Google Scholar 

  130. Narisawa-Saito M, Carnahan J, Araki K, Yamaguchi T, Nawa H . Brain-derived neurotrophic factor regulates the expression of AMPA receptor proteins in neocortical neurons Neuroscience 1999; 88: 1009–1014

    CAS  PubMed  Google Scholar 

  131. Zhou J, Bradford HF, Stern GM . Induction of dopaminergic neurotransmitter phenotype in rat embryonic cerebrocortex by the synergistic action of neurotrophins and dopamine Eur J Neurosci 1996; 8: 2328–2339

    CAS  PubMed  Google Scholar 

  132. Takei N, Sasaoka K, Inoue K, Takahashi M, Endo Y, Hatanaka H . Brain-derived neurotrophic factor increases the stimulation-evoked release of glutamate and the levels of exocytosis-associated proteins in cultured cortical neurons from embryonic rats J Neurochem 1997; 68: 370–375

    CAS  PubMed  Google Scholar 

  133. Galter D, Unsicker K . Regulation of the transmitter phenotype of rostral and caudal groups of cultured serotonergic raphe neurons Neuroscience 1999; 88: 549–559

    CAS  PubMed  Google Scholar 

  134. Ozaki M, Sasner M, Yano R, Lu HS, Buonanno A . Neuregulin-beta induces expression of an NMDA-receptor subunit Nature 1997; 390: 691–694

    CAS  PubMed  Google Scholar 

  135. Cheng B, Furukawa K, O'Keefe JA, Goodman Y, Kihiko M, Fabian T . Basic fibroblast growth factor selectively increases AMPA-receptor subunit GluR1 protein level and differentially modulates Ca2+ responses to AMPA and NMDA in hippocampal neurons J Neurochem 1995; 65: 2525–2536

    CAS  PubMed  Google Scholar 

  136. Lapchak PA, Miller PJ, Jiao S . Glial cell line-derived neurotrophic factor induces the dopaminergic and cholinergic phenotype and increases locomotor activity in aged Fischer 344 rats Neuroscience 1997; 77: 745–752

    CAS  PubMed  Google Scholar 

  137. Scarborough DE, Lee SL, Dinarello CA, Reichlin S . Interleukin-1 beta stimulates somatostatin biosynthesis in primary cultures of fetal rat brain Endocrinology 1989; 124: 549–551

    CAS  PubMed  Google Scholar 

  138. Ling ZD, Potter ED, Lipton JW, Carvey PM . Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines Exp Neurol 1998; 149: 411–423

    CAS  PubMed  Google Scholar 

  139. Kamegai M, Niijima K, Kunishita T, Nishizawa M, Ogawa M, Araki M et al. Interleukin 3 as a trophic factor for central cholinergic neurons in vitro and in vivo Neuron 1990; 4: 429–436

    CAS  PubMed  Google Scholar 

  140. Hama T, Kushima Y, Miyamoto M, Kubota M, Takei N, Hatanaka H . Interleukin-6 improves the survival of mesencephalic catecholaminergic and septal cholinergic neurons from postnatal, two-week-old rats in cultures Neuroscience 1991; 40: 445–452

    CAS  PubMed  Google Scholar 

  141. Rudge JS, Eaton MJ, Mather P, Lindsay RM, Whittemore SR . CNTF induces raphe neuronal precursors to switch from a serotonergic to a cholinergic phenotype in vitro Mol Cell Neurosci 1996; 7: 204–221

    CAS  PubMed  Google Scholar 

  142. Marz P, Heese K, Dimitriades-Schmutz B, Rose-John S, Otten U . Role of interleukin-6 and soluble IL-6 receptor in region-specific induction of astrocytic differentiation and neurotrophin expression Glia 1999; 26: 191–200

    CAS  PubMed  Google Scholar 

  143. Blesch A, Uy HS, Grill RJ, Cheng JG, Patterson PH, Tuszynski MH . Leukemia inhibitory factor augments neurotrophin expression and corticospinal axon growth after adult CNS injury J Neurosci 1999; 19: 3556–3566

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Alheim K, Andersson C, Tingsborg S, Ziolkowska M, Schultzberg M, Bartfai T . Interleukin 1 expression is inducible by nerve growth factor in PC12 pheochromocytoma cells Proc Natl Acad Sci USA 1991; 88: 9302–9306

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Someya for comments on this manuscript. Work cited from the authors’ laboratories was supported by the Japanese Society for the Promotion of Science (RFTF-96L00203) (HN), Grant-in-Aid for Scientific Research (MESSC) (HN), the National Institute of Neurological Disease and Stroke and the National Alliance for Research on Schizophrenia and Depression (PHP).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nawa, H., Takahashi, M. & Patterson, P. Cytokine and growth factor involvement in schizophrenia—support for the developmental model. Mol Psychiatry 5, 594–603 (2000). https://doi.org/10.1038/sj.mp.4000730

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000730

Keywords

This article is cited by

Search

Quick links