Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiple sclerosis—a quiet revolution

A Corrigendum to this article was published on 24 March 2015

This article has been updated

Key Points

  • MS has been a treatable disease for approximately 20 years, and incremental improvements in treatment options have culminated in remarkable progress for the amelioration of inflammatory aspects of MS

  • Traditionally, three patterns of disease evolution (relapsing–remitting, secondary progressive and primary progressive) were recognized, but present evidence suggests that these differing clinical phenotypes share common pathophysiology

  • A major unmet medical need in MS therapeutics is to define biomarkers to aid selection from the several treatment options so that individual patients can receive optimal personalized therapy

  • The requirement that patients fail IFN-β and glatiramer acetate therapy before being offered alternatives risks irreversible neural tissue injury during the process of initiating appropriate medication

  • Early, general statements that implicated a genetic component in multiple sclerosis (MS) susceptibility have been replaced by the identification of more than 100 genetic variants associated with disease susceptibility, 90% of which are noncoding

  • Over half of genetic variants associated with MS risk are also found in other autoimmune diseases, and are primarily associated with genes that regulate immune function

Abstract

Multiple sclerosis (MS) has been thought to be a complex and indecipherable disease, and poorly understood with regards to aetiology. Here, we suggest an emphatically positive view of progress over several decades in the understanding and treatment of MS, particularly focusing on advances made within the past 20 years. As with virtually all complex disorders, MS is caused by the interaction of genetic and environmental factors. In recent years, formidable biochemical, bioinformatic, epidemiological and neuroimaging tools have been brought to bear on research into the causes of MS. While susceptibility to the disease is now relatively well accounted for, disease course is not and remains a salient challenge. In the therapeutic realm, numerous agents have become available, reflecting the fact that the disease can be attacked successfully at many levels and using varied strategies. Tailoring therapies to individuals, risk mitigation and selection of first-line as compared with second-line medications remain to be completed. In our view, the MS landscape has been comprehensively and irreversibly transformed by this progress. Here we focus on MS therapeutics—the most meaningful outcome of research efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline for the development of disease-modifying drugs for MS.

Similar content being viewed by others

Change history

  • 24 March 2015

    In the version of this article initially published online, the Competing interests section was incomplete. The error has been corrected for the PDF and HTML versions of the article.

  • 19 February 2015

    In the version of this article initially published online, the Acknowledgements section was incomplete. The error has been corrected for the print, PDF and HTML versions of the article.

References

  1. Charcot, J. M. Histologie de la sclérose en plaques [French]. Gazette des Hopitaux 41, 554–555 (1868).

    Google Scholar 

  2. Dawson, J. D. The histology of disseminated sclerosis. Trans. Royal Soc. Edin. 50, 517–740 (1916).

    Article  Google Scholar 

  3. Fishman, R. A. Cerebrospinal fluid in diseases of the nervous system. 2nd edn (W. B. Saunders, 1992).

    Google Scholar 

  4. Rivers, T. M., Sprunt, D. H. & Berry, G. P. Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J. Exp. Med. 58, 39–56 (1933).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Compston, A. & Sadovnick, A. D. Epidemiology and genetics of multiple sclerosis. Curr. Opin. Neurol. Neurosurg. 5, 175–181 (1992).

    CAS  PubMed  Google Scholar 

  6. Rudick, R. A., Goodkin, D. E. & Ransohoff, R. M. Pharmacotherapy of multiple sclerosis: current status. Cleve. Clin. J. Med. 59, 267–277 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Weinshenker, B. G. The natural history of multiple sclerosis. Neurol. Clin. 13, 119–146 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Okuda, D. T. et al. Asymptomatic spinal cord lesions predict disease progression in radiologically isolated syndrome. Neurology 76, 686–692 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Amato, M. P. et al. Association of MRI metrics and cognitive impairment in radiologically isolated syndromes. Neurology 78, 309–314 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Okuda, D. T. et al. Radiologically isolated syndrome: 5-year risk for an initial clinical event. PloS ONE 9, e90509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Calabrese, M. et al. Low degree of cortical pathology is associated with benign course of multiple sclerosis. Mult. Scler. 19, 904–911 (2013).

    Article  PubMed  Google Scholar 

  12. Correale, J., Ysrraelit, M. C. & Fiol, M. P. Benign multiple sclerosis: does it exist? Curr. Neurol. Neurosci. Rep. 12, 601–609 (2012).

    Article  PubMed  Google Scholar 

  13. Calabrese, M. et al. Evidence for relative cortical sparing in benign multiple sclerosis: a longitudinal magnetic resonance imaging study. Mult. Scler. 15, 36–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Portaccio, E. et al. Neuropsychological and MRI measures predict short-term evolution in benign multiple sclerosis. Neurology 73, 498–503 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Benedict, R. H. & Fazekas, F. Benign or not benign MS: a role for routine neuropsychological assessment? Neurology 73, 494–495 (2009).

    Article  PubMed  Google Scholar 

  16. Hawkins, S. A. & McDonnell, G. V. Benign multiple sclerosis? Clinical course, long term follow up, and assessment of prognostic factors. J. Neurol. Neurosurg. Psychiatry 67, 148–152 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stern, J. N. et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci. Transl. Med. 6, 248ra107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. [No authors listed] Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology 43, 655–661 (1993).

  19. Hauser, S. L. et al. Intensive immunosuppression in progressive multiple sclerosis—a randomized, three-arm study of high-dose intravenous cyclophosphamide, plasma exchange, and ACTH. N. Engl. J. Med. 308, 173–180 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Paty, D. W. & Li, D. K. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology 43, 662–667 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. McGraw, C. A. & Lublin, F. D. Interferon beta and glatiramer acetate therapy. Neurotherapeutics 10, 2–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Trojano, M. et al. Real-life impact of early interferonβ therapy in relapsing multiple sclerosis. Ann. Neurol. 66, 513–520 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Trojano, M. et al. New natural history of interferon-β-treated relapsing multiple sclerosis. Ann. Neurol. 61, 300–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Scalfari, A. et al. Mortality in patients with multiple sclerosis. Neurology 81, 184–192 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Goodin, D. S. et al. Survival in MS: a randomized cohort study 21 years after the start of the pivotal IFNβ-1b trial. Neurology 78, 1315–1322 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bermel, R. A. et al. Predictors of long-term outcome in multiple sclerosis patients treated with interferon β. Ann. Neurol. 73, 95–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Prosperini, L. et al. Interferon beta failure predicted by EMA criteria or isolated MRI activity in multiple sclerosis. Mult. Scler. 20, 566–576 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Borden, E. C. et al. Interferons at age 50: past, current and future impact on biomedicine. Nat. Rev. Drug Discov. 6, 975–990 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Comabella, M. et al. A type I interferon signature in monocytes is associated with poor response to interferon-β in multiple sclerosis. Brain 132, 3353–3365 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Ottoboni, L. et al. An RNA profile identifies two subsets of multiple sclerosis patients differing in disease activity. Sci. Transl. Med. 4, 153ra131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cohen, J. A. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Kappos, L. et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N. Engl. J. Med. 355, 1124–1140 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Brown, B. A. Natalizumab in the treatment of multiple sclerosis. Ther. Clin. Risk Manag. 5, 585–594 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ransohoff, R. M. Natalizumab for multiple sclerosis. N. Engl. J Med. 356, 2622–2629 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Yednock, T. A. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature 356, 63–66 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Rudick, R. A. et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N. Engl. J. Med. 354, 911–923 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Langer-Gould, A., Atlas, S. W., Green, A. J., Bollen, A. W. & Pelletier, D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N. Engl. J. Med. 353, 375–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Koralnik, I. J. Progressive multifocal leukoencephalopathy revisited: has the disease outgrown its name? Ann. Neurol. 60, 162–173 (2006).

    Article  PubMed  Google Scholar 

  41. Yousry, T. A. et al. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N. Engl. J. Med. 354, 924–933 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ransohoff, R. M. PML risk and natalizumab: more questions than answers. Lancet Neurol. 9, 231–233 (2010).

    Article  PubMed  Google Scholar 

  43. Bloomgren, G. et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N. Engl. J. Med. 366, 1870–1880 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Pelletier, D. & Hafler, D. A. Fingolimod for multiple sclerosis. N. Engl. J. Med. 366, 339–347 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Hu, Y. et al. Sphingosine 1-phosphate receptor modulator fingolimod (FTY720) does not promote remyelination in vivo. Mol. Cell. Neurosci. 48, 72–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Jung, C. G. et al. Functional consequences of S1P receptor modulation in rat oligodendroglial lineage cells. Glia 55, 1656–1667 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Stecchi, S., Scandellari, C., Gabrielli, L. & Lazzarotto, T. Recommendations for fingolimod treated patients vacinated for varicella zoster virus. Neurology 82 (Suppl.), P7.217 (2014).

    Google Scholar 

  48. Gold, R. et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 367, 1098–1107 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Fox, R. J. et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N. Engl. J. Med. 367, 1087–1097 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Kappos, L. et al. Effect of BG-12 on contrast-enhanced lesions in patients with relapsing–remitting multiple sclerosis: subgroup analyses from the phase 2b study. Mult. Scler. 18, 314–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Kappos, L. et al. Efficacy and safety of oral fumarate in patients with relapsing–remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 372, 1463–1472 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Cohen, J. A. et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing–remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380, 1819–1828 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Coles, A. J. et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 380, 1829–1839 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. CAMMS223 Trial Investigators et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N. Engl. J. Med. 359, 1786–1801 (2008).

  55. Comi, G. et al. Placebo-controlled trial of oral laquinimod for multiple sclerosis. N. Engl. J. Med. 366, 1000–1009 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Comi, G. et al. Effect of laquinimod on MRI-monitored disease activity in patients with relapsing–remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 371, 2085–2092 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Gold, R. et al. Daclizumab high-yield process in relapsing–remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. Lancet 381, 2167–2175 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Wynn, D. et al. Daclizumab in active relapsing multiple sclerosis (CHOICE study): a phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon beta. Lancet Neurol. 9, 381–390 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Bielekova, B. et al. Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon β. Proc. Natl Acad. Sci. USA 101, 8705–8708 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature http://dx.doi.org/10.1038/nature13835.

  61. Wiendl, H. & Hohlfeld, R. Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials. BioDrugs 16, 183–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Panitch, H. S., Hirsch, R. L., Haley, A. S. & Johnson, K. P. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1, 893–895 (1987).

    Article  CAS  PubMed  Google Scholar 

  63. Panitch, H. S., Hirsch, R. L., Schindler, J. & Johnson, K. P. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37, 1097–1102 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Glabinski, A. R., Krakowski, M., Han, Y., Owens, T. & Ransohoff, R. M. Chemokine expression in GKO mice (lacking interferon-gamma) with experimental autoimmune encephalomyelitis. J. Neurovirol. 5, 95–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Krakowski, M. & Owens, T. Interferon-γ confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol. 26, 1641–1646 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. van Oosten, B. W. et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47, 1531–1534 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. [No authors listed] TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. Neurology 53, 457–465 (1999).

  68. Solomon, A. J., Spain, R. I., Kruer, M. C. & Bourdette, D. Inflammatory neurological disease in patients treated with tumor necrosis factor alpha inhibitors. Mult. Scler. 17, 1472–1487 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Ottoboni, L. et al. Clinical relevance and functional consequences of the TNFRSF1A multiple sclerosis locus. Neurology 81, 1891–1899 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dendrou, C. A., Bell, J. I. & Fugger, L. A clinical conundrum: the detrimental effect of TNF antagonists in multiple sclerosis. Pharmacogenomics 14, 1397–1404 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Chen, X. & Oppenheim, J. J. Contrasting effects of TNF and anti-TNF on the activation of effector T cells and regulatory T cells in autoimmunity. FEBS Lett. 585, 3611–3618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Segal, B. M. et al. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing–remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol. 7, 796–804 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Ryan, C., Thrash, B., Warren, R. B. & Menter, A. The use of ustekinumab in autoimmune disease. Expert Opin. Biol. Ther. 10, 587–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Kappos, L. et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 378, 1779–1787 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Ransohoff, R. M. A mighty mouse: building a better model of multiple sclerosis. J. Clin. Invest. 116, 2313–2316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lulu, S. & Waubant, E. Humoral-targeted immunotherapies in multiple sclerosis. Neurotherapeutics 10, 34–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Meinl, E., Derfuss, T., Krumbholz, M., Probstel, A. K. & Hohlfeld, R. Humoral autoimmunity in multiple sclerosis. J. Neurol. Sci. 306, 180–182 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Beck, R. W. et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N. Engl. J. Med. 326, 581–588 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Major, E. O., Frohman, E. & Douek, D. JC viremia in natalizumab-treated patients with multiple sclerosis. N. Engl. J. Med. 368, 2240–2241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. International Multiple Sclerosis Genetics Consortium (IMSGC) et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353–1360 (2013).

  83. Hafler, D. A. et al. Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med. 357, 851–862 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Cotsapas, C. & Hafler, D. A. Immune-mediated disease genetics: the shared basis of pathogenesis. Trends Immunol. 34, 22–26 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Frischer, J. M. et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132, 1175–1189 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hochmeister, S. et al. Dysferlin is a new marker for leaky brain blood vessels in multiple sclerosis. J. Neuropathol. Exp. Neurol. 65, 855–865 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Howell, O. W. et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134, 2755–2771 (2011).

    Article  PubMed  Google Scholar 

  88. Magliozzi, R. et al. A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol. 68, 477–493 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E. & Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 14, 164–174 (2004).

    Article  PubMed  Google Scholar 

  90. Popescu, B. F., Bunyan, R. F., Parisi, J. E., Ransohoff, R. M. & Lucchinetti, C. F. A case of multiple sclerosis presenting with inflammatory cortical demyelination. Neurology 76, 1705–1710 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lucchinetti, C. F. et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365, 2188–2197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chang, A. et al. Cortical remyelination: a new target for repair therapies in multiple sclerosis. Ann. Neurol. 72, 918–926 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Albert, M., Antel, J., Bruck, W. & Stadelmann, C. Extensive cortical remeylination in patients with chronic multiple sclerosis. Brain Pathol. 17, 129–138 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

D.A.H.'s work was supported by a National MS Society Collaborative Research Centre Award CA1061-A-18, NIH grants P01 AI045757, U19 AI046130, U19 AI070352, and P01 AI039671, the Penates Foundation and the Nancy Taylor Foundation for Chronic Diseases, Inc. C.F.L. is supported by a grant from the NIH, R01-NS049577-01-A2.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the researching of data for and writing of the article, and each made substantial contributions to the discussion of content and the revision/editing of the manuscript before submission.

Corresponding author

Correspondence to David A. Hafler.

Ethics declarations

Competing interests

R.M.R. is a full-time employee of Biogen. However, this article was written and submitted while he worked at the Cleveland Clinic. D.A.H. has consulted for Allergan Pharmaceuticals, Bristol-Myers Squibb, EMD Serono, Genzyme Sanofi-Aventis, MedImmune, Mylan Pharmaceuticals, Novartis Pharmaceuticals, Questcor and Teva Neuroscience. C.F.L. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ransohoff, R., Hafler, D. & Lucchinetti, C. Multiple sclerosis—a quiet revolution. Nat Rev Neurol 11, 134–142 (2015). https://doi.org/10.1038/nrneurol.2015.14

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.14

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing