Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical diagnosis and management of amyotrophic lateral sclerosis

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results in progressive loss of bulbar and limb function. Patients typically die from respiratory failure within 3 years of symptom onset. The incidence of ALS in Europe is 2–3 cases per 100,000 individuals in the general population, and the overall lifetime risk of developing the disease is 1:400. ALS is familial in 5% of cases, and shows a Mendelian pattern of inheritance. ALS is recognized to overlap with frontotemporal dementia. Diagnosis is made on clinical grounds, using internationally recognized consensus criteria, after exclusion of conditions that can mimic ALS. The Revised ALS Functional Rating Scale is currently the most widely used assessment tool; scores are used to predict survival, and have been employed extensively in clinical trials. Riluzole remains the only effective drug, and extends the average survival of patients by 3–6 months. Optimal treatment is based on symptom management and preservation of quality of life, provided in a multidisciplinary setting. The discovery of further effective disease-modifying therapies remains a critical need for patients with this devastating condition.

Key Points

  • Amyotrophic lateral sclerosis (ALS) is a syndrome of progressive deterioration involving the corticospinal tract, brainstem, and anterior horn cells of the spinal cord

  • The risk of developing ALS peaks between the ages of 50 years and 75 years; disease rates are elevated in populations of white European ancestry, and reduced in mixed populations

  • No definitive test for ALS exists; the diagnosis is established by excluding other causes of progressive upper motor neuron and lower motor neuron dysfunction

  • Up to 15% of patients with ALS have frontotemporal dementia, and a further 25% have evidence of cognitive impairment, mainly executive dysfunction

  • Clinical care is based on symptom management; however, riluzole, the only available disease-modifying drug, improves patients' survival early in the course of the disease

  • Further improvements in survival will depend on advances in understanding the origins and spread of this syndrome

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical features of ALS.
Figure 2: Voxel-based morphometry image from a patient with ALS.

Similar content being viewed by others

References

  1. Charcot, J. M. De la sclérose latérale amyotrophique [French]. Progrès Médical 2, 325 (1874).

    Google Scholar 

  2. Kiernan, M. C. et al. Amyotrophic lateral sclerosis. Lancet 377, 942–955 (2011).

    CAS  PubMed  Google Scholar 

  3. Deng, H. X. et al. FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann. Neurol. 67, 739–748 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Beleza-Meireles, A. & Al-Chalabi, A. Genetic studies of amyotrophic lateral sclerosis: controversies and perspectives. Amyotroph. Lateral Scler. 10, 1–14 (2009).

    CAS  PubMed  Google Scholar 

  5. Beghi, E. et al. for the Eurals Consortium. The epidemiology and treatment of ALS: focus on the heterogeneity of the disease and critical appraisal of therapeutic trials. Amyotroph. Lateral Scler. 12, 1–10 (2011).

    PubMed  Google Scholar 

  6. Byrne, S. et al. Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 82, 623–627 (2011).

    PubMed  Google Scholar 

  7. Logroscino, G. et al. Incidence of amyotrophic lateral sclerosis in Europe. J. Neurol. Neurosurg. Psychiatry 81, 385–390 (2010).

    PubMed  Google Scholar 

  8. Kuzuhara, S. Muro Disease: Amyotrophic lateral sclerosis/parkinsonism-dementia complex in Kii Peninsula of Japan. Brain Nerve 63, 119–129 (2011).

    PubMed  Google Scholar 

  9. Chiò, A. et al. Epidemiology of ALS in Italy: a 10-year prospective population-based study. Neurology 72, 725–731 (2009).

    PubMed  Google Scholar 

  10. O'Toole, O. et al. Epidemiology and clinical features of amyotrophic lateral sclerosis in Ireland between 1995 and 2004. J. Neurol. Neurosurg. Psychiatry 79, 30–32 (2008).

    CAS  PubMed  Google Scholar 

  11. Johnston, C. A. et al. Amyotrophic lateral sclerosis in an urban setting: a population based study of inner city London. J. Neurol. 253, 1642–1643 (2006).

    PubMed  Google Scholar 

  12. Alonso, A., Logroscino, G., Jick, S. S. & Hernán, M. A. Incidence and lifetime risk of motor neuron disease in the United Kingdom: a population-based study. Eur. J. Neurol. 16, 745–751 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cronin, S., Hardiman, O. & Traynor, B. J. Ethnic variation in the incidence of ALS: a systematic review. Neurology 68, 1002–1007 (2007).

    PubMed  Google Scholar 

  14. Zaldivar, T. et al. Reduced frequency of ALS in an ethnically mixed population: a population-based mortality study. Neurology 72, 1640–1650 (2009).

    CAS  PubMed  Google Scholar 

  15. Steele, J. C. Parkinsonism-dementia complex of Guam. Mov. Disord. 20 (Suppl. 12), S99–S107 (2005).

    PubMed  Google Scholar 

  16. Kuzuhara, S. & Kokubo, Y. Atypical parkinsonism of Japan: amyotrophic lateral sclerosis-parkinsonism-dementia complex of the Kii peninsula of Japan (Muro disease): an update. Mov. Disord. 20 (Suppl. 12), S108–S113 (2005).

    PubMed  Google Scholar 

  17. Steele, J. C. & McGeer, P. L. The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 70, 1984–1990 (2008).

    PubMed  Google Scholar 

  18. Sutedja, N. A. et al. What we truly know about occupation as a risk factor for ALS: a critical and systematic review. Amyotroph. Lateral Scler. 10, 295–301 (2009).

    PubMed  Google Scholar 

  19. Chiò, A., Benzi, G., Dossena, M., Mutani, R. & Mora, G. Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain 128, 472–476 (2005).

    PubMed  Google Scholar 

  20. Chio, A. et al. ALS in Italian professional soccer players: the risk is still present and could be soccer-specific. Amyotroph. Lateral Scler. 10, 205–209 (2009).

    PubMed  Google Scholar 

  21. Kasarskis, E. J. et al. Clinical aspects of ALS in Gulf War veterans. Amyotroph. Lateral Scler. 10, 35–41 (2009).

    PubMed  Google Scholar 

  22. Horner, R. D. et al. Amyotrophic lateral sclerosis among 1991 Gulf War veterans: evidence for a time-limited outbreak. Neuroepidemiology 31, 28–32 (2008).

    PubMed  Google Scholar 

  23. Armon, C. Smoking may be considered an established risk factor for sporadic ALS. Neurology 73, 1693–1698 (2009).

    PubMed  PubMed Central  Google Scholar 

  24. Alonso, A., Logroscino, G. & Hernán, M. A. Smoking and the risk of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 81, 1249–1252 (2010).

    PubMed  Google Scholar 

  25. Sutedja, N. A. et al. Exposure to chemicals and metals and risk of amyotrophic lateral sclerosis: a systematic review. Amyotroph. Lateral Scler. 10, 302–309 (2009).

    PubMed  Google Scholar 

  26. Ferguson, T. A. & Elman, L. B. Clinical presentation and diagnosis of amyotrophic lateral sclerosis. NeuroRehabilitation 22, 409–416 (2007).

    PubMed  Google Scholar 

  27. Kiernan, M. C. et al. Amyotrophic lateral sclerosis. Lancet 377, 942–955 (2011).

    CAS  PubMed  Google Scholar 

  28. Ravits, J. M. & La Spada, A. R. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73, 805–811 (2009).

    PubMed  PubMed Central  Google Scholar 

  29. Eisen, A., Kim, S. & Pant, B. Amyotrophic lateral sclerosis (ALS): a phylogenetic disease of the corticomotoneuron? Muscle Nerve 15, 219–224 (1992).

    CAS  PubMed  Google Scholar 

  30. Donaghy, C. et al. Slow saccades in bulbar-onset motor neurone disease. J. Neurol. 257, 1134–1140 (2010).

    PubMed  Google Scholar 

  31. Donaghy, C. et al. Ocular fixation instabilities in motor neurone disease. A marker of frontal lobe dysfunction? J. Neurol. 256, 420–426 (2009).

    CAS  PubMed  Google Scholar 

  32. Chiò, A. ISIS Survey: an international study on the diagnostic process and its implications in amyotrophic lateral sclerosis. J. Neurol. 246 (Suppl. 3), III1–III5 (1999).

    PubMed  Google Scholar 

  33. Phukan, J., Pender, N. P. & Hardiman, O. Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol. 6, 994–1003 (2007).

    CAS  PubMed  Google Scholar 

  34. Strong, M. J. et al. Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 10, 131–136 (2009).

    PubMed  Google Scholar 

  35. Strong, M. J. The syndromes of frontotemporal dysfunction in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 9, 323–338 (2008).

    CAS  PubMed  Google Scholar 

  36. Raaphorst, J., de Visser, M., Linssen, W. H., de Haan, R. J. & Schmand, B. The cognitive profile of amyotrophic lateral sclerosis: A meta-analysis. Amyotroph. Lateral Scler. 11, 27–37 (2010).

    PubMed  Google Scholar 

  37. Elamin, M. et al. Executive dysfunction is a negative prognostic indictor in patients with ALS without dementia. Neurology 76, 1263–1269 (2011).

    CAS  PubMed  Google Scholar 

  38. Phukan, J. et al. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J. Neurol. Neurosurg. Psychiatry http://dx.doi.org/10.1136/jnnp-2011-300188.

  39. Abrahams, S. et al. Verbal fluency and executive dysfunction in amyotrophic lateral sclerosis (ALS). Neuropsychologia 38, 734–747 (2000).

    CAS  PubMed  Google Scholar 

  40. Woolley, S. C. et al. Detecting frontotemporal dysfunction in ALS: utility of the ALS Cognitive Behavioral Screen (ALS-CBS). Amyotroph. Lateral Scler. 11, 303–311 (2010).

    PubMed  Google Scholar 

  41. Gilbert, R. M., Fahn, S., Mitsumoto, H. & Rowland, L. P. Parkinsonism and motor neuron diseases: twenty-seven patients with diverse overlap syndromes. Mov. Disord. 25, 1868–1875 (2010).

    PubMed  Google Scholar 

  42. Farníková, K., Kanovský, P., Nestrasil, I. & Otruba, P. Coexistence of parkinsonism, dementia and upper motor neuron syndrome in four Czech patients. J. Neurol. Sci. 296, 47–54 (2010).

    PubMed  Google Scholar 

  43. Fallis, B. A. & Hardiman, O. Aggregation of neurodegenerative disease in ALS kindreds. Amyotroph. Lateral Scler. 10, 95–98 (2009).

    PubMed  Google Scholar 

  44. Przedborski, S., Vila, M. & Jackson-Lewis, V. Neurodegeneration: what is it and where are we? J. Clin. Invest. 111, 3–10 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gordon, P. H. et al. The natural history of primary lateral sclerosis. Neurology 66, 647–653 (2006).

    CAS  PubMed  Google Scholar 

  46. Brugman, F. et al. Primary lateral sclerosis as a phenotypic manifestation of familial ALS. Neurology 64, 1778–1779 (2005).

    CAS  PubMed  Google Scholar 

  47. Brugman, F. et al. Differentiation of hereditary spastic paraparesis from primary lateral sclerosis in sporadic adult-onset upper motor neuron syndromes. Arch. Neurol. 66, 509–514 (2009).

    PubMed  Google Scholar 

  48. Visser, J. et al. Disease course and prognostic factors of progressive muscular atrophy. Arch. Neurol. 64, 522–528 (2007).

    PubMed  Google Scholar 

  49. Ince, P. G. et al. Corticospinal tract degeneration in the progressive muscular atrophy variant of ALS. Neurology 60, 1252–1258 (2003).

    CAS  PubMed  Google Scholar 

  50. Van den Berg-Vos, R. M. et al. A long-term prospective study of the natural course of sporadic adult-onset lower motor neuron syndromes. Arch. Neurol. 66, 751–757 (2009).

    PubMed  Google Scholar 

  51. Traynor, B. J. et al. Amyotrophic lateral sclerosis mimic syndromes: a population-based study. Arch. Neurol. 57, 108–113 (2000).

    Google Scholar 

  52. Davenport, R. J., Swingler, R. J., Chancellor, A. M. & Warlow, C. P. Avoiding false positive diagnoses of motor neuron disease: lessons from the Scottish Motor Neuron Disease Register. J. Neurol. Neurosurg. Psychiatry 60, 147–151 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cats, E. A. et al. Correlates of outcome and response to IVIg in 88 patients with multifocal motor neuropathy. Neurology 75, 818–825 (2010).

    CAS  PubMed  Google Scholar 

  54. Finsterer, J. Perspectives of Kennedy's disease. J. Neurol. Sci. 298, 1–10 (2010).

    CAS  PubMed  Google Scholar 

  55. Brooks, B. R. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. J. Neurol. Sci. 124 (Suppl.), 96–107 (1994).

    PubMed  Google Scholar 

  56. Miller, R. G., Munsat, T. L., Swash, M. & Brooks, B. R. Consensus guidelines for the design and implementation of clinical trials in ALS. World Federation of Neurology committee on Research. J. Neurol. Sci. 169, 2–12 (1999).

    CAS  PubMed  Google Scholar 

  57. de Carvalho, M. et al. Electrodiagnostic criteria for diagnosis of ALS. Clin. Neurophysiol. 119, 497–503 (2008).

    PubMed  Google Scholar 

  58. Schrooten, M., Smetcoren, C., Robberecht, W. & Van Damme, P. Benefit of the Awaji diagnostic algorithm for amyotrophic lateral sclerosis: A prospective study. Ann. Neurol. 70, 79–83 (2011).

    PubMed  Google Scholar 

  59. Forbes, R. B., Colville, S. & Swingler, R. J. Are the El Escorial and Revised El Escorial criteria for ALS reproducible? A study of inter-observer agreement. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 2, 135–138 (2001).

    CAS  PubMed  Google Scholar 

  60. Beghi, E. et al. Reliability of the El Escorial diagnostic criteria for amyotrophic lateral sclerosis. Neuroepidemiology 21, 265–270 (2002).

    PubMed  Google Scholar 

  61. Traynor, B. J. et al. Clinical features of amyotrophic lateral sclerosis according to the El Escorial and Airlie House diagnostic criteria: a population-based study. Arch. Neurol. 57, 1171–1176 (2000).

    CAS  PubMed  Google Scholar 

  62. Daube, J. R. Electrodiagnostic studies in amyotrophic lateral sclerosis and other motor neuron disorders. Muscle Nerve 23, 1488–1502 (2000).

    CAS  PubMed  Google Scholar 

  63. Eisen, A. & Swash, M. Clinical neurophysiology of ALS. Clin. Neurophysiol. 112, 2190–2201 (2001).

    CAS  PubMed  Google Scholar 

  64. Triggs, W. J. et al. Transcranial magnetic stimulation identifies upper motor neuron involvement in motor neuron disease. Neurology 53, 605–611 (1999).

    CAS  PubMed  Google Scholar 

  65. Mills, K. R. The natural history of central motor abnormalities in amyotrophic lateral sclerosis. Brain 126, 2558–2566 (2003).

    CAS  PubMed  Google Scholar 

  66. Vucic, S., Howells, J., Trevillion, L. & Kiernan, M. C. Assessment of cortical excitability using threshold tracking techniques. Muscle Nerve 33, 477–486 (2006).

    PubMed  Google Scholar 

  67. Vucic, S. & Kiernan, M. C. Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain 129, 2436–2446 (2006).

    PubMed  Google Scholar 

  68. Byrne, S. et al. Proposed criteria for familial amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 12, 157–159 (2011).

    PubMed  Google Scholar 

  69. Gros-Louis, F., Soucy, G., Larivière, R. & Julien, J. P. Intracerebroventricular infusion of monoclonal antibody or its derived Fab fragment against misfolded forms of SOD1 mutant delays mortality in a mouse model of ALS. J. Neurochem. 113, 1188–1199 (2010).

    CAS  PubMed  Google Scholar 

  70. Isis Pharmaceuticals [online], (2011).

  71. Phase II/III randomized, placebo-controlled trial of arimoclomol in SOD1 positive familial amyotropic lateral sclerosis. ClinicalTrials.gov [online], (2011).

  72. SOD1 inhibition by pyrimethamine in familial amyotrophic lateral sclerosis (ALS). ClinicalTrials.gov [online], (2011).

  73. Turner, M. R., Kiernan, M. C., Leigh, P. N. & Talbot, K. Biomarkers in amyotrophic lateral sclerosis. Lancet Neurology 8, 94–109 (2009).

    CAS  PubMed  Google Scholar 

  74. Hecht, M. J. et al. Hyperintense and hypointense MRI signals of the precentral gyrus and corticospinal tract in ALS: a follow-up examination including FLAIR images. J. Neurol. Sci. 199, 59–65 (2002).

    PubMed  Google Scholar 

  75. Lulé, D., Ludolph, A. C. & Kassubek, J. MRI-based functional neuroimaging in ALS: an update. Amyotroph. Lateral Scler. 10, 258–268 (2009).

    PubMed  Google Scholar 

  76. Unrath, A., Ludolph, A. C. & Kassubek, J. Brain metabolites in definite amyotrophic lateral sclerosis. A longitudinal proton magnetic resonance spectroscopy study. J. Neurol. 254, 1099–1106 (2007).

    CAS  PubMed  Google Scholar 

  77. Senda, J. et al. Progressive and widespread brain damage in ALS: MRI voxel-based morphometry and diffusion tensor imaging study. Amyotroph. Lateral Scler. 12, 59–69 (2011).

    PubMed  Google Scholar 

  78. Abrahams, S. et al. Frontotemporal white matter changes in amyotrophic lateral sclerosis. J. Neurol. 252, 321–331 (2005).

    PubMed  Google Scholar 

  79. Woolley, S. C., Zhang, Y., Schuff, N., Weiner, M. W. & Katz, J. S. Neuroanatomical correlates of apathy in ALS using 4 Tesla diffusion tensor MRI. Amyotroph. Lateral Scler. 12, 52–58 (2011).

    PubMed  Google Scholar 

  80. Lulé, D. et al. Neuroimaging of multimodal sensory stimulation in amyotrophic lateral sclerosis J. Neurol. Neurosurg. Psychiatry 81, 899–906 (2010).

    PubMed  Google Scholar 

  81. Filippini, N. et al. Corpus Callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology 75, 1645–1652 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Agosta, F. et al. A longitudinal diffusion tensor MRI study of the cervical cord and brain in amyotrophic lateral sclerosis patients. J. Neurol. Neurosurg. Psychiatry 80, 53–55 (2009).

    CAS  PubMed  Google Scholar 

  83. Chiò, A. et al. Prognostic factors in ALS: A critical review. Amyotroph. Lateral Scler. 10, 310–323 (2009).

    PubMed  PubMed Central  Google Scholar 

  84. Wijesekera, L. C. et al. Natural history and clinical features of the flail arm and flail leg ALS variants. Neurology 72, 1087–1094 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Burrell, J. R., Vucic, S. & Kiernan, M. C. Isolated bulbar phenotype of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 12, 283–289 (2011).

    PubMed  Google Scholar 

  86. Chiò, A. et al. Lower serum lipid levels are related to respiratory impairment in patients with ALS. Neurology 73, 1681–1685 (2009).

    PubMed  Google Scholar 

  87. Dorst, J. et al. Patients with elevated triglyceride and cholesterol serum levels have a prolonged survival in amyotrophic lateral sclerosis. J. Neurol. 258, 613–617 (2011).

    CAS  PubMed  Google Scholar 

  88. Sutedja, N. A. et al. Beneficial vascular risk profile is associated with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 82, 638–642 (2011).

    CAS  PubMed  Google Scholar 

  89. Traynor, B. J. et al. Functional outcome measures as clinical trial endpoints in ALS. Neurology 63, 1933–1935 (2004).

    CAS  PubMed  Google Scholar 

  90. Traynor, B. J., Alexander, M., Corr, B., Frost, E. & Hardiman, O. Effect of a multidisciplinary amyotrophic lateral sclerosis (ALS) clinic on ALS survival: a population based study, 1996–2000. J. Neurol. Neurosurg. Psychiatry 74, 1258–1261 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Van den Berg, J. P. et al. Multidisciplinary ALS care improves quality of life in patients with ALS. Neurology 65, 1264–1267 (2005).

    CAS  PubMed  Google Scholar 

  92. Chiò, A. et al. Positive effects of tertiary centres for amyotrophic lateral sclerosis on outcome and use of hospital facilities. J. Neurol. Neurosurg. Psychiatry 77, 948–950 (2006).

    PubMed  PubMed Central  Google Scholar 

  93. Andersen, P. M. et al. Good practice in the management of amyotrophic lateral sclerosis: clinical guidelines. An evidence-based review with good practice points. EALSC Working Group. Amyotroph. Lateral Scler. 8, 195–213 (2007).

    PubMed  Google Scholar 

  94. Miller, R. G. et al. Practice parameter update: The care of the patient with amyotrophic lateral sclerosis: multidisciplinary care, symptom management, and cognitive/behavioral impairment (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 73, 1227–1233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Miller, R. G. et al. Practice parameter update: The care of the patient with amyotrophic lateral sclerosis: drug, nutritional, and respiratory therapies (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 73, 1218–1226 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Cudkowicz, M. E. et al. Toward more efficient clinical trials for amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 11, 259–265 (2010).

    CAS  PubMed  Google Scholar 

  97. Lanka, V. & Cudkowicz, M. Therapy development for ALS: lessons learned and path forward. Amyotroph. Lateral Scler. 9, 131–140 (2008).

    CAS  PubMed  Google Scholar 

  98. Miller, R. G., Mitchell, J. D., Lyon, M. & Moore, D. H. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD001447. doi:10.1002/14651858.CD001447.pub2 (2007).

  99. Hardiman, O. Management of respiratory symptoms in ALS. J. Neurol. 258, 359–365 (2011).

    PubMed  Google Scholar 

  100. Morgan, R. K. et al. Use of Sniff nasal-inspiratory force to predict survival in amyotrophic lateral sclerosis. Am. J. Respir. Crit. Care Med. 171, 269–274 (2005).

    PubMed  Google Scholar 

  101. Bourke, S. C. et al. Effects of non-invasive ventilation on survival and quality of life in patients with amyotrophic lateral sclerosis: a randomised controlled trial. Lancet Neurol. 5, 140–147 (2006).

    PubMed  Google Scholar 

  102. Mustfa, N. et al. The effect of noninvasive ventilation on ALS patients and their caregivers. Neurology 66, 1211–1217 (2006).

    CAS  PubMed  Google Scholar 

  103. Pinto, S. & De Carvalho, M. Is a four-hour use of non-invasive ventilation enough to define compliance? Amyotroph. Lateral Scler. 11, 250–252 (2010).

    PubMed  Google Scholar 

  104. Sancho, J., Servera, E., Díaz, J. & Marín, J. Efficacy of mechanical insufflation-exsufflation in medically stable patients with amyotrophic lateral sclerosis. Chest 125, 1400–1405 (2004).

    PubMed  Google Scholar 

  105. Gilio, F. et al. Botulinum toxin type A for the treatment of sialorrhoea in amyotrophic lateral sclerosis: a clinical and neurophysiological study. Amyotroph. Lateral Scler. 11, 359–363 (2010).

    CAS  PubMed  Google Scholar 

  106. Winterholler, M. G., Erbguth, F. J., Wolf, S. & Kat, S. Botulinum toxin for the treatment of sialorrhoea in ALS: serious side effects of a transductal approach. J. Neurol. Neurosurg. Psychiatry 70, 417–418 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Cooper-Knock, J., Ahmedzai, S. H. & Shaw, P. The use of subcutaneous glycopyrrolate in the management of sialorrhoea and facilitating the use of non-invasive ventilation in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. http://dx.doi.org/10.3109/17482968.2011.584195.

  108. Neppelberg, E., Haugen, D. F., Thorsen, L. & Tysnes, O. B. Radiotherapy reduces sialorrhea in amyotrophic lateral sclerosis. Eur. J. Neurol. 14, 1373–1377 (2007).

    CAS  PubMed  Google Scholar 

  109. Limousin, N. et al. Malnutrition at the time of diagnosis is associated with a shorter disease duration in ALS. J. Neurol. Sci. 297, 36–39 (2010).

    PubMed  Google Scholar 

  110. Dupuis, L., Pradat, P. F., Ludolph, A. C. & Loeffler, J. P. Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol. 10, 75–82 (2011).

    CAS  PubMed  Google Scholar 

  111. Kidney, D., Alexander, M., Corr, B., O'toole, O. & Hardiman, O. Oropharyngeal dysphagia in amyotrophic lateral sclerosis: neurological and dysphagia specific rating scales. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 5, 150–153 (2004).

    PubMed  Google Scholar 

  112. Thornton, F. J. et al. Amyotrophic lateral sclerosis: enteral nutrition provision—endoscopic or radiologic gastrostomy? Radiology 224, 713–717 (2002).

    PubMed  Google Scholar 

  113. Chiò, A. et al. Percutaneous radiological gastrostomy: a safe and effective method of nutritional tube placement in advanced ALS. J. Neurol. Neurosurg. Psychiatry 75, 645–647 (2004).

    PubMed  PubMed Central  Google Scholar 

  114. Sancho, J. et al. Noninvasive respiratory muscle aids during PEG placement in ALS patients with severe ventilatory impairment. J. Neurol. Sci. 297, 55–59 (2010).

    PubMed  Google Scholar 

  115. Bede, P. et al. Palliative care in amyotrophic lateral sclerosis: a review of current international guidelines and initiatives. J. Neurol. Neurosurg. Psychiatry 82, 413–418 (2011).

    PubMed  Google Scholar 

  116. Neudert, C., Wasner, M. & Borasio, G. D. Patients' assessment of quality of life instruments: a randomised study of SIP, SF-36 and SEIQoL-DW in patients with amyotrophic lateral sclerosis. J. Neurol. Sci. 191, 103–109 (2001).

    CAS  PubMed  Google Scholar 

  117. Jenkinson, C., Levvy, G., Fitzpatrick, R. & Garratt, A. The amyotrophic lateral sclerosis assessment questionnaire (ALSAQ-40): tests of data quality, score reliability and response rate in a survey of patients. J. Neurol. Sci. 180, 94–100 (2000).

    CAS  PubMed  Google Scholar 

  118. Jenkinson, C., Fitzpatrick, R., Brennan, C. & Swash, M. Evidence for the validity and reliability of the ALS assessment questionnaire: the ALSAQ-40. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 1, 33–40 (1999).

    CAS  PubMed  Google Scholar 

  119. Jenkinson, C. & Fitzpatrick, R. Reduced item set for the amyotrophic lateral sclerosis assessment questionnaire: development and validation of the ALSAQ-5. J. Neurol. Neurosurg. Psychiatry 70, 70–73 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Simmons, Z. et al. The ALSSQOL: balancing physical and nonphysical factors in assessing quality of life in ALS. Neurology 67, 1659–1664 (2006).

    CAS  PubMed  Google Scholar 

  121. Hardiman, O., Hickey, A. & O'Donerty, L. J. Physical decline and quality of life in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 5, 230–234 (2004).

    PubMed  Google Scholar 

  122. De Groot, I. J., Post, M. W., Van Heuveln, T., Van den Berg, L. H. & Lindeman, E. Cross-sectional and longitudinal correlations between disease progression and different health-related quality of life domains in persons with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 8, 356–361 (2007).

    PubMed  Google Scholar 

  123. Felgoise, S. H. et al. The SEIQoL-DW for assessing quality of life in ALS: strengths and limitations. Amyotroph. Lateral Scler. 10, 456–462 (2009).

    PubMed  Google Scholar 

  124. Robbins, R. A., Simmons, Z., Bremer, B. A., Walsh, S. M. & Fischer, S. Quality of life in ALS is maintained as physical function declines. Neurology 56, 442–444 (2001).

    CAS  PubMed  Google Scholar 

  125. Cupp, J. et al. Psychological health in patients with ALS is maintained as physical function declines. Amyotroph. Lateral Scler. 12, 290–296 (2011).

    PubMed  Google Scholar 

  126. Felgoise, S. H. et al. Psychological morbidity in ALS: the importance of psychological assessment beyond depression alone. Amyotroph. Lateral Scler. 11, 351–358 (2010).

    PubMed  Google Scholar 

  127. Walsh, S. M., Bremer, B. A., Felgoise, S. H. & Simmons, Z. Religiousness is related to quality of life in patients with ALS. Neurology 60, 1527–1529 (2003).

    PubMed  Google Scholar 

  128. Calvo, A. et al. Religiousness is positively associated with quality of life of ALS caregivers. Amyotroph. Lateral Scler. 12, 168–171 (2011).

    PubMed  Google Scholar 

  129. Goldstein, L. H., Atkins, L., Landau, S., Brown, R. & Leigh, P. N. Predictors of psychological distress in carers of people with amyotrophic lateral sclerosis: a longitudinal study. Psychol. Med. 36, 865–875 (2006).

    CAS  PubMed  Google Scholar 

  130. Gauthier, A. et al. A longitudinal study on quality of life and depression in ALS patient-caregiver couples. Neurology 68, 923–926 (2007).

    CAS  PubMed  Google Scholar 

  131. Pagnini, F. et al. Existential well-being and spirituality of individuals with amyotrophic lateral sclerosis is related to psychological well-being of their caregivers. Amyotroph. Lateral Scler. 12, 105–108 (2011).

    PubMed  Google Scholar 

  132. Pagnini, F. et al. Burden, depression, and anxiety in caregivers of people with amyotrophic lateral sclerosis. Psychol. Health Med. 15, 685–693 (2010).

    PubMed  Google Scholar 

  133. Oliver, D. J. & Turner, M. R. Some difficult decisions in ALS/MND. Amyotroph. Lateral Scler. 11, 339–343 (2010).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

O. Hardiman was funded by the European Union Health Research 7th Framework Program, 2007–2013, under grant agreement number 259,867, and by the Health Research Board Ireland.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the research of data, discussion of content, writing, and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Orla Hardiman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Box

Supplementary Box (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardiman, O., van den Berg, L. & Kiernan, M. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 7, 639–649 (2011). https://doi.org/10.1038/nrneurol.2011.153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing