Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts

Key Points

  • Long non-coding RNAs (lncRNAs), which constitute a substantial fraction of mammalian transcriptomes, are new, enigmatic players in the complex transcriptional milieu.

  • RNA is a versatile molecule that is well suited for a myriad of functions. This versatility stems from adeptness of RNA at sequence-specific nucleic acid recognition, its ability to fold into intricate three-dimensional structures, as well as its dynamic and malleable nature.

  • lncRNAs directly and indirectly regulate transcription. Specifically, lncRNAs both positively and negatively influence transcription by modulating chromatin, acting as enhancers, regulating transcription factor function and organizing nuclear domains.

  • lncRNAs regulate mRNA processing by modulating pre-mRNA splicing and have the potential to direct mRNA editing. Additionally, lncRNAs modulate other post-transcriptional events such as translation, mRNA stability and miRNA-mediated repression.

  • lncRNAs can act as scaffolds to organize multiprotein complexes and subnuclear domains.

  • With lncRNAs now found in exosomes, lncRNAs have the potential to function as signalling molecules. In addition, lncRNAs can increase genetic diversity by determining the sites of recombination.

Abstract

The increased application of transcriptome-wide profiling approaches has led to an explosion in the number of documented long non-coding RNAs (lncRNAs). While these new and enigmatic players in the complex transcriptional milieu are encoded by a significant proportion of the genome, their functions are mostly unknown. Early discoveries support a paradigm in which lncRNAs regulate transcription via chromatin modulation, but new functions are steadily emerging. Given the biochemical versatility of RNA, lncRNAs may be used for various tasks, including post-transcriptional regulation, organization of protein complexes, cell-cell signalling and allosteric regulation of proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA is a biochemically versatile polymer.
Figure 2: lncRNAs regulate transcription through several mechanisms.
Figure 3: lncRNAs influence mRNA processing and post-transcriptional regulation.
Figure 4: lncRNAs are involved in various cellular contexts.

Similar content being viewed by others

References

  1. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012). Provides an overview of a series of papers released as part of the ENCODE project in which landmarks of biochemical function (regions of transcription, transcription factor association and histone modifications, among others) were attributed to 80% of the genome.

  2. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Koch, F., Jourquin, F., Ferrier, P. & Andrau, J.-C. Genome-wide RNA polymerase II: not genes only! Trends Biochem. Sci. 33, 265–273 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taft, R. J., Pheasant, M. & Mattick, J. S. The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 29, 288–299 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Berretta, J. & Morillon, A. Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep. 10, 973–982 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into functions. Nature Rev. Genet. 10, 155–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Rinn, J. L. & Chang, H. Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Mercer, T. R. & Mattick, J. S. Structure and function of long noncoding RNAs in epigenetic regulation. Nature Struct. Mol. Biol. 20, 300–307 (2013).

    Article  CAS  Google Scholar 

  10. Ponting, C. P. & Belgard, T. G. Transcribed dark matter: meaning or myth? Hum. Mol. Genet. 19, R162–R168 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ponting, C. P., Oliver, P. L. & Reik, W. Evolution and functions of long noncoding RNAs. Cell 136, 629–641 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Wilusz, J. E., Sunwoo, H. & Spector, D. L. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 23, 1494–1504 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagano, T. & Fraser, P. No-nonsense functions for long noncoding RNAs. Cell 145, 178–181 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Lee, J. T. Epigenetic regulation by long noncoding RNAs. Science 338, 1435–1439 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Kugel, J. F. & Goodrich, J. A. Non-coding RNAs: key regulators of mammalian transcription. Trends Biochem. Sci. 37, 144–151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Robertson, M. P. & Joyce, G. F. The origins of the RNA world. Cold Spring Harb. Perspect. Biol. 4, pii: a003608. (2012).

    Article  CAS  Google Scholar 

  17. Filipovska, A. & Rackham, O. Modular recognition of nucleic acids by PUF, TALE and PPR proteins. Mol. Biosyst 8, 699–708 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Stoltenburg, R., Reinemann, C. & Strehlitz, B. SELEX — a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 24, 381–403 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Serganov, A. & Patel, D. J. Molecular recognition and function of riboswitches. Curr. Opin. Struct. Biol. 22, 279–286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pei, B. et al. The GENCODE pseudogene resource. Genome Biol. 13, R51 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stoye, J. P. Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nature Rev. Microbiol. 10, 395–406 (2012).

    Article  CAS  Google Scholar 

  22. Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 11667–11672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, J. et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell 40, 939–953 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsai, M.-C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010). Illustrates an elegant example of a dominant theme in the lncRNA field whereby lncRNAs physically associate with histone-modifying complexes to regulate chromatin states. Importantly, shows that HOTAIR can also act as a scaffold to organize the concerted actions of two enzymatic activities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spitale, R. C., Tsai, M.-C. & Chang, H. Y. RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics 6, 539–543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yap, K. L. et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38, 662–674 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Kotake, Y. et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene 30, 1956–1962 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Kornienko, A. E., Guenzl, P. M., Barlow, D. P. & Pauler, F. M. Gene regulation by the act of long non-coding RNA transcription. BMC Biol. 11, 59 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Latos, P. A. et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338, 1469–1472 (2012). Provides a particularly compelling example of a mammalian lncRNA, AIRN , which represses target expression by transcriptional interference, as transcriptional overlap of the lncRNA with the target promoter rather than the lncRNA transcript itself is sufficient to interfere with Pol II recruitment.

    Article  CAS  PubMed  Google Scholar 

  31. Hongay, C. F., Grisafi, P. L., Galitski, T. & Fink, G. R. Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell 127, 735–745 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. van Werven, F. J. et al. Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell 150, 1170–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Camblong, J., Iglesias, N., Fickentscher, C., Dieppois, G. & Stutz, F. Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 131, 706–717 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Carrozza, M. J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Houseley, J., Rubbi, L., Grunstein, M., Tollervey, D. & Vogelauer, M. A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol. Cell 32, 685–695 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev. 19, 697–708 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bumgarner, S. L. et al. Single-cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment. Mol. Cell 45, 470–482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hainer, S. J., Pruneski, J. A., Mitchell, R. D., Monteverde, R. M. & Martens, J. A. Intergenic transcription causes repression by directing nucleosome assembly. Genes Dev. 25, 29–40 (2011). Demonstrates a novel mode of SER3 gene repression by the yeast lncRNA SRG1 that involves the direction of nucleosome occupancy at the SER3 promoter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hirota, K. et al. Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature 456, 130–134 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Lefevre, P., Witham, J., Lacroix, C. E., Cockerill, P. N. & Bonifer, C. The LPS-induced transcriptional upregulation of the chicken lysozyme locus involves CTCF eviction and noncoding RNA transcription. Mol. Cell 32, 129–139 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bumgarner, S. L., Dowell, R. D., Grisafi, P., Gifford, D. K. & Fink, G. R. Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc. Natl Acad. Sci. USA 106, 18321–18326 (2009). Provides the first description of the pair of cis -interfering lncRNAs at the FLO11 locus in yeast, where a regulatory circuit toggles between two states of expression depending on the identity of the lncRNA expressed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Flynn, R. A. & Chang, H. Y. Active chromatin and noncoding RNAs: an intimate relationship. Curr. Opin. Genet. Dev. 22, 172–178 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Ørom, U. A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58 (2010). Describes a novel class of lncRNAs that, instead of repressing, activates target genes to function as RNA-dependent enhancers of gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lai, F. et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494, 497–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, T.-K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mariner, P. D. et al. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol. Cell 29, 499–509 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. & Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445, 666–670 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Shamovsky, I., Ivannikov, M., Kandel, E. S., Gershon, D. & Nudler, E. RNA-mediated response to heat shock in mammalian cells. Nature 440, 556–560 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Kino, T., Hurt, D. E., Ichijo, T., Nader, N. & Chrousos, G. P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3, ra8 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Feng, J. et al. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 20, 1470–1484 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bond, A. M. et al. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nature Neurosci. 12, 1020–1027 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, X. et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454, 126–130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Willingham, A. T. et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309, 1570–1573 (2005). The first study to functionally screen 512 evolutionarily conserved putative lncRNAs. Identified the NRON lncRNA as a repressor of NFAT nuclear trafficking.

    Article  CAS  PubMed  Google Scholar 

  55. Yang, L. et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147, 773–788 (2011). Describes a particularly interesting paradigm whereby the post-translational modification status of a protein effector constitutes a switch in lncRNA-binding specificity and consequently determines the nuclear subdomain localization of target genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Geisler, S., Lojek, L., Khalil, A. M., Baker, K. E. & Coller, J. Decapping of long noncoding RNAs regulates inducible genes. Mol. Cell 45, 279–291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mattick, J. S. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep. 2, 986–991 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moore, M. J. From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Beltran, M. et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition. Genes Dev. 22, 756–769 (2008). Provides an example of a NAT lncRNA that regulates splicing of the sense encoded mRNA, but with a twist in that the NAT increases protein levels of its target by preventing the splicing of a 5′ UTR IRES-containing intron.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hastings, M. L., Milcarek, C., Martincic, K., Peterson, M. L. & Munroe, S. H. Expression of the thyroid hormone receptor gene, erbAα, in B lymphocytes: alternative mRNA processing is independent of differentiation but correlates with antisense RNA levels. Nucleic Acids Res. 25, 4296–4300 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Krystal, G. W., Armstrong, B. C. & Battey, J. F. N-myc mRNA forms an RNA–RNA duplex with endogenous antisense transcripts. Mol. Cell. Biol. 10, 4180–4191 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Munroe, S. H. & Lazar, M. A. Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J. Biol. Chem. 266, 22083–22086 (1991).

    CAS  PubMed  Google Scholar 

  63. Faghihi, M. A. & Wahlestedt, C. Regulatory roles of natural antisense transcripts. Nature Rev. Mol. Cell. Biol. 10, 637–643 (2009).

    Article  CAS  Google Scholar 

  64. Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39, 925–938 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hundley, H. A. & Bass, B. L. ADAR editing in double-stranded UTRs and other noncoding RNA sequences. Trends Biochem. Sci. 35, 377–383 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Peters, N. T., Rohrbach, J. A., Zalewski, B. A., Byrkett, C. M. & Vaughn, J. C. RNA editing and regulation of Drosophila 4f-rnp expression by sas-10 antisense readthrough mRNA transcripts. RNA 9, 698–710 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    Article  PubMed  Google Scholar 

  68. Carrieri, C. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491, 454–457 (2012). Discovers and characterizes the first lncRNA of a potentially new class of partially antisense SINE2B repeat-containing lncRNAs which upregulates translation of targets.

    Article  CAS  PubMed  Google Scholar 

  69. Nishizawa, M. et al. Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast. PLoS Biol. 6, 2817–2830 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Gong, C. & Maquat, L. E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470, 284–288 (2011). Provides the first evidence that Alu element-containing lncRNAs can transactivate SMD by imperfectly base pairing with 3′ UTR Alu elements in target mRNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Faghihi, M. A. et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase. Nature Med. 14, 723–730 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Faghihi, M. A. et al. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol. 11, R56 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, J. et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 38, 5366–5383 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genet. 39, 1033–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature http://dx.doi.org/10.1038/nature11993 (2013). References 77 and 78 provide powerful evidence that circRNAs, covalently linked by the head-to-tail splicing of exons, can function as miRNA sponges to suppress miRNA activity.

  78. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature http://dx.doi.org/10.1038/nature11928 (2013).

  79. Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yin, Q.-F. et al. Long noncoding RNAs with snoRNA ends. Mol. Cell 48, 219–230 (2012). Describes the discovery of a new class of intron-derived lncRNAs flanked by snoRNAs and shows that one in particular associates with splicing regulators to alter splicing patterns.

    Article  CAS  PubMed  Google Scholar 

  81. Hellwig, S. & Bass, B. L. A starvation-induced noncoding RNA modulates expression of Dicer-regulated genes. Proc. Natl Acad. Sci. USA 105, 12897–12902 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pijlman, G. P. et al. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe 4, 579–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Moon, S. L. et al. A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability. RNA 18, 2029–2040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu, X., Li, D., Zhang, W., Guo, M. & Zhan, Q. Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J. 31, 4415–4427 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Buratti, E. & Baralle, F. E. The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation. RNA Biol. 7, 420–429 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Colombrita, C. et al. TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. J. Biol. Chem. 287, 15635–15647 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Strong, M. J. et al. TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol. Cell. Neurosci. 35, 320–327 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Volkening, K., Leystra-Lantz, C., Yang, W., Jaffee, H. & Strong, M. J. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res. 1305, 168–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nature Neurosci. 14, 452–458 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Zappulla, D. C. & Cech, T. R. Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc. Natl Acad. Sci. USA 101, 10024–10029 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Halic, M. et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427, 808–814 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Pfeiffer, V. & Lingner, J. TERRA promotes telomere shortening through exonuclease 1-mediated resection of chromosome ends. PLoS Genet. 8, e1002747 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Carmo-Fonseca, M. & Rino, J. RNA seeds nuclear bodies. Nature Cell Biol. 13, 110–112 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Shevtsov, S. P. & Dundr, M. Nucleation of nuclear bodies by RNA. Nature Cell Biol. 13, 167–173 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Sunwoo, H. et al. MEN ε/β nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 19, 347–359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sasaki, Y. T. F., Ideue, T., Sano, M., Mituyama, T. & Hirose, T. MENε/β noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc. Natl Acad. Sci. USA 106, 2525–2530 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mao, Y. S., Sunwoo, H., Zhang, B. & Spector, D. L. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nature Cell Biol. 13, 95–101 (2011). Uses a live-cell imaging system to directly visualize paraspeckle protein recruitment and shows that NEAT1 lncRNA transcription regulates paraspeckle maintenance with the lncRNA potentially acting as an assembly platform.

    Article  CAS  PubMed  Google Scholar 

  98. Cieśla, J. Metabolic enzymes that bind RNA: yet another level of cellular regulatory network? Acta Biochim. Pol. 53, 11–32 (2006).

    PubMed  Google Scholar 

  99. Hentze, M. W. & Argos, P. Homology between IRE-BP, a regulatory RNA-binding protein, aconitase, and isopropylmalate isomerase. Nucleic Acids Res. 19, 1739–1740 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mukhopadhyay, R., Jia, J., Arif, A., Ray, P. S. & Fox, P. L. The GAIT system: a gatekeeper of inflammatory gene expression. Trends Biochem. Sci. 34, 324–331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lotvall, J. & Valadi, H. Cell to cell signalling via exosomes through esRNA. Cell Adh. Migr. 1, 156–158 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ramachandran, S. & Palanisamy, V. Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley Interdiscip. Rev. RNA 3, 286–293 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biol. 10, 1470–1476 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Mathivanan, S., Fahner, C. J., Reid, G. E. & Simpson, R. J. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 40, D1241–D1244 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Huang, X. et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14, 319 (2013). Characterizes, for the first time, the RNA content of exosomes by RNA sequencing and reveals that lncRNAs are indeed present in these membrane-bound vesicles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yu, K., Chedin, F., Hsieh, C.-L., Wilson, T. E. & Lieber, M. R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nature Immunol. 4, 442–451 (2003).

    Article  CAS  Google Scholar 

  108. Abarrategui, I. & Krangel, M. S. Noncoding transcription controls downstream promoters to regulate T-cell receptor-α recombination. EMBO J. 26, 4380–4390 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pone, E. J., Xu, Z., White, C. A., Zan, H. & Casali, P. B cell TLRs and induction of immunoglobulin class-switch DNA recombination. Front. Biosci. 17, 2594–2615 (2012).

    Article  CAS  Google Scholar 

  110. Stavnezer, J. & Amemiya, C. T. Evolution of isotype switching. Semin. Immunol. 16, 257–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Hackney, J. A. et al. DNA targets of AID evolutionary link between antibody somatic hypermutation and class switch recombination. Adv. Immunol. 101, 163–189 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Selsing, E. Ig class switching: targeting the recombinational mechanism. Curr. Opin. Immunol. 18, 249–254 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Abarrategui, I. & Krangel, M. S. Regulation of T cell receptor-α gene recombination by transcription. Nature Immunol. 7, 1109–1115 (2006).

    Article  CAS  Google Scholar 

  114. Cobb, R. M., Oestreich, K. J., Osipovich, O. A. & Oltz, E. M. Accessibility control of V(D)J recombination. Adv. Immunol. 91, 45–109 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Petes, T. D. Meiotic recombination hot spots and cold spots. Nature Rev. Genet. 2, 360–369 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Wahls, W. P., Siegel, E. R. & Davidson, M. K. Meiotic recombination hotspots of fission yeast are directed to loci that express non-coding RNA. PLoS ONE 3, e2887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Spitale, R. C. et al. RNA SHAPE analysis in living cells. Nature Chem. Biol. 9, 18–20 (2013).

    Article  CAS  Google Scholar 

  118. Martin, L. et al. Systematic reconstruction of RNA functional motifs with high-throughput microfluidics. Nature Methods 9, 1192–1194 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Paige, J. S., Wu, K. Y. & Jaffrey, S. R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tsai, M.-C., Spitale, R. C. & Chang, H. Y. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 71, 3–7 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are most grateful to T. Nilsen and K. Baker for insights and suggestions. The authors regret that not all contributions of their colleagues could be discussed due to space constraints. Work in the authors' laboratory is funded by the National Institute of General Medical Sciences (NIGMS) (GM080465).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sarah Geisler or Jeff Coller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Chromatin

Condensed DNA structure that is associated with histone proteins and other DNA-binding proteins.

Transcription activator-like effectors

(TALEs). Naturally found in some bacteria, TALEs are proteins that bind DNA through repeat domains, and their code for sequence specificity has been elucidated allowing sequence specific TALEs to be engineered.

PUF proteins

A family of sequence-specific RNA-binding proteins, which bind 3′ untranslated regions within mRNAs to repress target mRNA translation.

Pseudogenes

Dysfunctional relatives of normal genes thought to arise from duplication or retrotransposition.

Chromatin-modifying complexes

Protein complexes that catalyse the covalent chemical modification of chromatin.

Enhancers

Short regions of DNA that enhance the expression of genes at varying distances. Effects can be mediated by transcription factor binding to these sites.

Alu SINE elements

Highly abundant retrotransposons of the short interspersed nuclear elements (SINE) family.

Nuclear subdomains

Non-membrane bound subcompartments of eukaryotic nuclei where factors with similar functions colocalize.

GAL locus

An inducible locus in yeast comprising the GAL1 and GAL10 genes, which are required for galactose metabolism.

Alternative splicing

An mRNA processing step whereby exons can be alternatively used to generate different isoforms of the same gene.

Internal ribosome entry sites

(IRESs). Nucleotide sequence that allows cap-independent translation initiation within the middle of an mRNA transcript.

Spliceosome

The macromolecular machinery (composed of both RNA and protein) responsible for pre-mRNA splicing.

miRNAs

(miRNAs). A class of short (23 nucleotides) endogenous non-coding RNAs that control gene expression post-transcriptionally through either translational repression or mRNA degradation.

Competing endogeneous RNA

(ceRNA). RNA transcripts (both coding and non-coding), which share microRNA-targeting sites and thus regulate each other via direct competition for microRNA binding.

Circular RNA

(circRNA). As opposed to conventional linear RNA transcripts, the 5′ and 3′ ends of circular RNAs are covalently linked together.

Small nucleolar RNA

(snoRNA). A class of small RNA molecules that guide the chemical modification of other RNA transcripts.

sno-lncRNAs

(small nucleolar long non-coding RNAs). Class of intron-derived long non-coding RNA flanked by snoRNA ends.

Dicer

An RNase III family endoribonuclease responsible for the processing of pre-miRNAs into short double-stranded RNAs to be loaded into the RNA-induced silencing (RISC) complex.

Adaptive immune system

A system of specialized cells that create immunological memory via specific antibodies after an initial response to a pathogen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geisler, S., Coller, J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 14, 699–712 (2013). https://doi.org/10.1038/nrm3679

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3679

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing