Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbiota-mediated colonization resistance against intestinal pathogens

Key Points

  • Antibiotic treatment disrupts the native intestinal microbiota and favours infection with and the proliferation of antibiotic-resistant intestinal pathogens. Clinically important antibiotic-resistant pathogens include vancomycin-resistant Enterococcus spp., various Enterobacteriaceae and Clostridium difficile.

  • The intestinal microbiota influences the development, the maintenance and the function of the innate and adaptive immune systems. Host immune function is decreased in the intestines following antibiotic therapy, and antibiotic-treated hosts are susceptible to intestinal infection.

  • Microbiota-derived bacterial populations and products that enhance immune defence against intestinal pathogens are being identified. However, the precise bacterial sources of many immunomodulatory molecules remain unclear and, conversely, the molecular mechanisms by which most probiotics restore immunity have yet to be elucidated.

  • In addition to indirectly enhancing colonization resistance by stimulating host immune defences, bacterial populations can directly suppress intestinal pathogens by competitive exclusion and by antimicrobial activities. The commensal populations that are responsible for direct antagonism of pathogens and indirect, immune-mediated colonization resistance may be closely related and difficult to distinguish.

  • Microbiota-derived bacterial populations and products, a subset of which enhance immune defence, can also promote intestinal inflammation, whereas other microbiota components restrain effector responses and promote tolerance.

  • Manipulation of the intestinal microbiota to prevent and to treat some intestinal infections, such as C. difficile, shows promise in human patients and animal models of infection. However, the specific contributions of the individual bacterial populations that constitute the consortia transferred in such studies remain mostly undefined.

Abstract

Commensal bacteria inhabit mucosal and epidermal surfaces in mice and humans, and have effects on metabolic and immune pathways in their hosts. Recent studies indicate that the commensal microbiota can be manipulated to prevent and even to cure infections that are caused by pathogenic bacteria, particularly pathogens that are broadly resistant to antibiotics, such as vancomycin-resistant Enterococcus faecium, Gram-negative Enterobacteriaceae and Clostridium difficile. In this Review, we discuss how immune- mediated colonization resistance against antibiotic-resistant intestinal pathogens is influenced by the composition of the commensal microbiota. We also review recent advances characterizing the ability of different commensal bacterial families, genera and species to restore colonization resistance to intestinal pathogens in antibiotic-treated hosts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intestinal bacteria confer indirect (immune-mediated) and direct colonization resistance against enteric pathogens.
Figure 2: Phylogenetic relationships of intestinal bacteria that influence host immunity and colonization resistance to pathogens.

Similar content being viewed by others

References

  1. Sensakovic, J. W. & Smith, L. G. Oral antibiotic treatment of infectious diseases. Med. Clin. North. Am. 85, 115–123, vii (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Chung, H. et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149, 1578–1593 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Diehl, G. E. et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells. Nature 494, 116–120 (2013). This study shows that the normal microbiota stimulates MYD88-dependent pathways to restrict the delivery of commensal bacteria to the mesenteric lymph nodes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Duan, J., Chung, H., Troy, E. & Kasper, D. L. Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing γ/δ T cells. Cell Host Microbe 7, 140–150 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Farache, J. et al. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38, 581–595 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Wingender, G. et al. Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology 143, 418–428 (2012).

    Article  PubMed  CAS  Google Scholar 

  8. Hand, T. W. et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 337, 1553–1556 (2012). This study shows that pathogen-induced destruction of the intestinal epithelium can result in aberrant T cell responses against bystander commensal microorganisms.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lathrop, S. K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004). This study shows that immune responses to intestinal commensal bacteria remain restricted to the intestines and that they induce the production of IgA, which helps to prevent mucosal penetration by luminal bacteria.

    Article  CAS  PubMed  Google Scholar 

  11. Donskey, C. J. Antibiotic regimens and intestinal colonization with antibiotic-resistant Gram-negative bacilli. Clin. Infect. Dis. 43 (Suppl. 2), S62–S69 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Stiefel, U. & Donskey, C. J. The role of the intestinal tract as a source for transmission of nosocomial pathogens. Curr. Infect. Dis. Rep. 6, 420–425 (2004).

    Article  PubMed  Google Scholar 

  13. McDonald, L. C. et al. An epidemic, toxin gene-variant strain of Clostridium difficile. N. Engl. J. Med. 353, 2433–2441 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Owens, R. C. et al. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin. Infect. Dis. 46, S19–31 (2008).

    Article  PubMed  Google Scholar 

  15. Spigaglia, P. Barbanti, F., Mastrantonio, P. & European Study Group on Clostridium difficile (ESGCD). Multidrug resistance in European Clostridium difficile clinical isolates. J. Antimicrob. Chemother. 66, 2227–2234 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Jernberg, C., Löfmark, S., Edlund, C. & Jansson, J. K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1, 56–66 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Buffie, C. G. et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 80, 62–73 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Johnson, S. & Gerding, D. N. Clostridium difficile-associated diarrhea. Clin. Infect. Dis. 26, 1027–1036 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, X. et al. A mouse model of Clostridium difficile-associated disease. Gastroenterology 135, 1984–1992 (2008).

    Article  PubMed  Google Scholar 

  20. Lawley, T. D. et al. Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun. 77, 3661–3669 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Reeves, A. E. et al. The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile infection. Gut Microbes 2, 145–158 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hasegawa, M. et al. Nucleotide-binding oligomerization domain 1 mediates recognition of Clostridium difficile and induces neutrophil recruitment and protection against the pathogen. J. Immunol. 186, 4872–4880 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Jarchum, I. et al. Critical role for MyD88-mediated neutrophil recruitment during Clostridium difficile colitis. Infect. Immun. 80, 2989–2996 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hasegawa, M. et al. Protective role of commensals against Clostridium difficile infection via an IL-1β-mediated positive-feedback loop. J. Immunol. 189, 3085–3091 (2012).

    Article  PubMed  CAS  Google Scholar 

  25. Jarchum, I., Liu, M., Lipuma, L. & Pamer, E. G. Toll-like receptor 5 stimulation protects mice from acute Clostridium difficile colitis. Infect. Immun. 79, 1498–1503 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kyne, L., Warny, M., Qamar, A. & Kelly, C. P. Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N. Engl. J. Med. 342, 390–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Lowy, I. et al. Treatment with monoclonal antibodies against Clostridium difficile toxins. N. Engl. J. Med. 362, 197–205 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Mundy, L. M., Sahm, D. F. & Gilmore, M. Relationships between enterococcal virulence and antimicrobial resistance. Clin. Microbiol. Rev. 13, 513–522 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Arias, C. A. & Murray, B. E. The rise of the Enterococcus: beyond vancomycin resistance. Nature Rev. Microbiol. 10, 266–278 (2012).

    Article  CAS  Google Scholar 

  30. Donskey, C. J. et al. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N. Engl. J. Med. 343, 1925–1932 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ubeda, C. et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest. 120, 4332–4341 (2010). This study shows that marked proliferation of VRE in the intestinal microbiota precedes bacteraemia in susceptible patients.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Taur, Y. et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 55, 905–914 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Brandl, K. et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455, 804–807 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kinnebrew, M. A. et al. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J. Infect. Dis. 201, 534–543 (2010).

    Article  PubMed  CAS  Google Scholar 

  35. Brandl, K. et al. MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med. 204, 1891–1900 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mundy, R. et al. Citrobacter rodentium of mice and man. Cell. Microbiol. 7, 1697–1706 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Ayabe, T. et al. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nature Immunol. 1, 113–118 (2000).

    Article  CAS  Google Scholar 

  38. Vaishnava, S. et al. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl Acad. Sci. USA 105, 20858–20863 (2008). This study definitively shows that MYD88-mediated signalling in epithelial cells drives expression of antimicrobial proteins, such as REGIIIγ.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chu, H. et al. Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337, 477–481 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sotolongo, J. et al. Host innate recognition of an intestinal bacterial pathogen induces TRIF-dependent protective immunity. J. Exp. Med. 208, 2705–2716 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005). This seminal study identifies the CX 3 CR1+ subset of intestinal DCs and characterizes their ability to sample commensal antigens in the intestinal lumen from the lamina propria by extending transepithelial dendrites.

    Article  CAS  PubMed  Google Scholar 

  42. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 122, 107–118 (2005). This study identifies polysaccharide A from the intestinal commensal bacterium Bacteroides fragilis as a bacteria-derived molecule that can induce and modulate host immune development in the intestines.

    Article  CAS  PubMed  Google Scholar 

  43. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 145, 745–757 (2011). This study shows that inflammasomes can shape the composition of the colonic microbiota and that deficiency of the NLRP6 component can lead to a dysbiotic flora that can drive intestinal inflammation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sonnenburg, J. L., Chen, C. T. & Gordon, J. I. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol. 4, e413 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Abt, M. C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity. 37, 158–170 (2012). This study shows that commensal bacteria-derived signals enhance antiviral immunity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ferreira, R. B. et al. The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization. PLoS ONE 6, e20338 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. de Sablet, T. et al. Human microbiota-secreted factors inhibit shiga toxin synthesis by enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 77, 783–790 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ubeda, C. et al. Intestinal microbiota containing Barnesiella cures vancomycin-resistant Enterococcus faecium colonization. Infect. Immun. 81, 965–973 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Pultz, N. J. et al. Mechanisms by which anaerobic microbiota inhibit the establishment in mice of intestinal colonization by vancomycin-resistant Enterococcus. J. Infect. Dis. 191, 949–956 (2005).

    Article  PubMed  Google Scholar 

  51. Kinnebrew, M. A. et al. Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36, 276–287 (2012). This study shows that CD103+ DCs in the lamina propria respond to flagellin by rapidly and transiently producing IL-23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Reeves, A. E., Koenigsknecht, M. J., Bergin, I. L. & Young, V. B. Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect. Immun. 80, 3786–3794 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kankainen, M. et al. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc. Natl Acad. Sci. USA 106, 17193–17198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reunanen, J. et al. Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 78, 2337–2344 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yan, F. et al. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132, 562–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Banerjee, P., Merkel, G. J. & Bhunia, A. K. Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells. Gut. Pathog. 1, 8 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Douillard, F. P. et al. Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics. Appl. Environ. Microbiol. 79, 1923–1933 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Karlsson, H., Larsson, P., Wold, E. & Rudin, A. Pattern of cytokine responses to Gram-positive and Gram-negative commensal bacteria is profoundly changed when monocytes differentiate into dendritic cells Infect. Immun. 72, 2671–2678 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wullt, M., Hagslätt, M. L. & Odenholt, I. Lactobacillus plantarum 299v for the treatment of recurrent Clostridium difficile-associated diarrhoea: a double-blind, placebo-controlled trial. Scand. J. Infect. Dis. 35, 365–367 (2003).

    Article  PubMed  Google Scholar 

  60. Thompson, C. L. et al. 'Candidatus Arthromitus' revised: segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae. Environ. Microbiol. 14, 1454–1465 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Sczesnak, A. et al. The genome of th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host Microbe 10, 260–272 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011). This study identifies a consortium of Clostridia commensal bacteria that are collectively sufficient for the induction of CD4+ T Reg cells as well as resistance to colitis and allergic responses in mice.

    Article  CAS  PubMed  Google Scholar 

  63. Guinane, C. M. et al. Genome sequence of Bifidobacterium breve DPC 6330, a strain isolated from the human intestine. J. Bacteriol. 193, 6799–6800 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Huang, J. Y., Lee, S. M. & Mazmanian, S. K. The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe 17, 137–141 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Talham, G. L., Jiang, H. Q., Bos, N. A. & Cebra, J. J. Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect. Immun. 67, 1992–2000 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009). This study identifies that SFB are sufficient for the induction of CD4+ T H 17 cells and for resistance to C. rodentium infection in mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Shaw, M. H., Kamada, N., Kim, Y. G. & Núñez, G. Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J. Exp. Med. 209, 251–258 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Stepankova, R. et al. Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells. Inflamm. Bowel. Dis. 13, 1202–1211 (2007).

    Article  PubMed  Google Scholar 

  71. Kondepudi, K. K. et al. Prebiotic-non-digestible oligosaccharides preference of probiotic bifidobacteria and antimicrobial activity against Clostridium difficile. Anaerobe 18, 489–497 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Turroni, F. et al. Diversity of bifidobacteria within the infant gut microbiota. PLoS ONE 7, e36957 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Schell, M. A. et al. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl Acad. Sci. USA 99, 14422–14427 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Trejo, F. M., Minnaard, J., Perez, P. F. & De Antoni, G. L. Inhibition of Clostridium difficile growth and adhesion to enterocytes by Bifidobacterium supernatants. Anaerobe 12, 186–193 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Schoster, A. et al. In vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains. Anaerobe 20, 36–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Hütt, P. et al. Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens. J. Appl. Microbiol. 100, 1324–1332 (2006).

    Article  PubMed  Google Scholar 

  77. Gagnon, M., Kheadr, E. E., Le Blay, G. & Fliss, I. In vitro inhibition of Escherichia coli O157:H7 by bifidobacterial strains of human origin. Int. J. Food Microbiol. 92, 69–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Fukuda, S. et al. Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters. Gut Microbes 3, 449–454 (2012).

    Article  PubMed  Google Scholar 

  80. Fanning, S. et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc. Natl Acad. Sci. USA 109, 2108–2113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 486, 207–214 (2012).

  82. Garrett, W. S. et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131, 33–45 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kang, S. S. et al. An antibiotic-responsive mouse model of fulminant ulcerative colitis. PLoS Med. 5, e41 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Chen, G. Y., Shaw, M. H., Redondo, G. & Núñez, G. The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer. Res. 68, 10060–10067 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Garrett, W. S. et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8, 292–300 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Bloom, S. M. et al. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe 9, 390–403 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Stecher, B. et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5, 2177–2189 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Winter, S. E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013). This study shows that intestinal inflammation can promote the expansion of low abundance populations of Proteobacteria.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Round, J. L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Dessein, R. et al. Toll-like receptor 2 is critical for induction of Reg3β expression and intestinal clearance of Yersinia pseudotuberculosis. Gut 58, 771–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Chow, J. & Mazmanian, S. K. A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe 7, 265–276 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kwon, H. K. et al. Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc. Natl Acad. Sci. USA 107, 2159–2164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Negishi, H. et al. Essential contribution of IRF3 to intestinal homeostasis and microbiota-mediated Tslp gene induction. Proc. Natl Acad. Sci. USA 109, 21016–21021 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang, F. et al. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am. J. Gastroenterol. 107, 1755 (2012).

    Article  PubMed  Google Scholar 

  103. Bakken, J. S. et al. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin. Gastroenterol. Hepatol. 9, 1044–1049 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hamilton, M. J., Weingarden, A. R., Sadowsky, M. J. & Khoruts, A. Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Am. J. Gastroenterol. 107, 761–767 (2012).

    Article  PubMed  Google Scholar 

  105. Hamilton, M. J. et al. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria Gut Microbes 4, 125–135 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013). This study shows that faecal microbiota transplantation is markedly more effective than standard antibiotic regimens for the treatment of recurrent C. difficile infection.

    Article  CAS  PubMed  Google Scholar 

  107. Tvede, M. & Rask-Madsen, J. Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet 1, 1156–1160 (1989).

    Article  CAS  PubMed  Google Scholar 

  108. Petrof, E. O. et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: 'RePOOPulating' the gut Microbiome 1, 3 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lawley, T. D. et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 8, e1002995 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Bohnhoff, M. & Miller, C. P. Enhanced susceptibility to Salmonella infection in streptomycin-treated mice. J. Infect. Dis. 111, 117–127 (1962).

    Article  CAS  PubMed  Google Scholar 

  111. van der Waaij, D. & Berghuis-de Vries, J. M. & Lekkerkerk-van der Wees, J. E. C. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J. Hyg. (Lond.) 69, 405–411 (1971).

    Article  CAS  Google Scholar 

  112. Hentges, D. J. & Freter, R. In vivo and in vitro antagonism of intestinal bacteria against Shigella flexneri. I. Correlation between various tests. J. Infect. Dis. 110, 30–37 (1962).

    Article  CAS  PubMed  Google Scholar 

  113. Freter, R. In vivo and in vitro antagonism of intestinal bacteria against Shigella flexneri. II. The inhibitory mechanism. J. Infect. Dis. 110, 38–46 (1962).

    Article  CAS  PubMed  Google Scholar 

  114. Miller, C. P. & Bohnhoff, M. Changes in the mouse's enteric microflora associated with enhanced susceptibility to Salmonella infection following streptomycin treatment. J. Infect. Dis. 113, 59–66 (1963).

    Article  CAS  PubMed  Google Scholar 

  115. Bohnhoff, M., Miller, C. P. & Martin, W. R. Resistance of the mouse's intestinal tract to experimental Salmonella infection. I. Factors which interfere with the initiation of infection by oral inoculation. J. Exp. Med. 120, 805–816 (1964).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Bohnhoff, M., Miller, C. P. & Martin, W. R. Resistance of the mouse's intestinal tract to experimental Salmonella infection. II. Factors responsible for its loss following streptomycin treatment. J. Exp. Med. 120, 817–828 (1964).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med. 14, 282–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Chieppa, M., Rescigno, M., Huang, A. Y. & Germain, R. N. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203, 2841–2852 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Rescigno, M., Rotta, G., Valzasina, B. & Ricciardi-Castagnoli, P. Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology 204, 572–581 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Wei, M. et al. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nature Immunol. 12, 264–270 (2011).

    Article  CAS  Google Scholar 

  123. DePaolo, R. W. et al. A specific role for TLR1 in protective TH17 immunity during mucosal infection. J. Exp. Med. 209, 1437–1444 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Endt, K. et al. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog. 6, e1001097 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Niess, J. H. & Adler, G. Enteric flora expands gut lamina propria CX3CR1+ dendritic cells supporting inflammatory immune responses under normal and inflammatory conditions. J. Immunol. 184, 2026–2037 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Zhou, L. et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Chinen, T., Volchkov, P. Y., Chervonsky, A. V. & Rudensky, A. Y. A critical role for regulatory T cell-mediated control of inflammation in the absence of commensal microbiota. J. Exp. Med. 207, 2323–2330 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Sciumé, G. et al. Distinct requirements for T-bet in gut innate lymphoid cells. J. Exp. Med. 209, 2331–2338 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science 330, 665–669 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Spits, H. et al. Innate lymphoid cells — a proposal for uniform nomenclature. Nature Rev. Immunol. 13, 145–149 (2013).

    Article  CAS  Google Scholar 

  135. Sonnenberg, G. F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336, 1321–1325 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Sonnenberg, G. F. et al. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 34, 122–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nature Immunol. 10, 83–91 (2009).

    Article  CAS  Google Scholar 

  139. Sonnenberg, G. F. & Artis, D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity 37, 601–610 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Ducluzeau, R., Dubos, F., Raibaud, P. & Abrams, G. D. Inhibition of Clostridium perfringens by an antibiotic substance produced by Bacillus licheniformis in the digestive tract of gnotobiotic mice: effect on other bacteria from the digestive tract. Antimicrob. Agents Chemother. 9, 20–25 (1976).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Honda, H. et al. Use of a continuous culture fermentation system to investigate the effect of GanedenBC30 (Bacillus coagulans GBI-30, 6086) supplementation on pathogen survival in the human gut microbiota. Anaerobe 17, 36–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Rea, M. C. et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl Acad. Sci. USA 107, 9352–9357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rea, M. C. et al. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4639–4644 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Rea, M. C. et al. Antimicrobial activity of lacticin 3,147 against clinical Clostridium difficile strains. J. Med. Microbiol. 56, 940–946 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Basler, M. et al. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483, 182–186 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Basler, M., Ho, B. T. & Mekalanos, J. J. Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell. 152, 884–894 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

E.G.P. receives funding from US National Institutes of Health (NIH) grants RO1 AI42135 and AI95706, and from the Tow Foundation. C.G.B. was supported by a Medical Scientist Training Program grant from the National Institute of General Medical Sciences of the NIH (award number T32GM07739, which was awarded to the Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric G. Pamer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Innate lymphocytes

Lymphoid cells that are dependent on signalling through the common cytokine receptor γ-chain but that lack recombined antigen receptors. They have important roles in mucosal defence, epithelial homeostasis and lymphoid tissue development.

Endospores

Metabolically inactive bacterial forms that are resistant to chemical and physical stresses and that reactivate under specific environmental conditions.

Vegetative bacteria

Metabolically active bacterial forms.

Toxic megacolon

A potentially lethal complication of infectious colitis or inflammatory bowel disease that is characterized by mucosal inflammation, dilatation of the colon and systemic toxicity.

Paneth cell

Specialized epithelial cell that is found at the base of crypts in the small intestine and that expresses various antimicrobial proteins.

Cryptdins

Microbicidal peptides that are expressed in granules of phagocytic leukocytes and in secretory granules of Paneth cells.

Bacteroidetes

A major bacterial phylum of the intestinal microbiota that comprises physiologically diverse aerobic and anaerobic Gram-negative bacteria commonly associated with the degradation of complex carbohydrates.

Firmicutes

A major bacterial phylum of the intestinal microbiota that primarily comprises Gram-positive bacteria that have low guanine and cytosine DNA content. They are phenotypically diverse, commonly polyphyletic and are often distinguished by their ability to form endospores.

Actinobacteria

A bacterial phylum that is abundant in the intestinal microbiota and that is primarily composed of Gram-positive bacteria that have high guanine and cytosine content in their DNA and that are commonly associated with secondary metabolite production.

Proteobacteria

A bacterial phylum, which is abundant in the intestinal microbiota, that is composed of Gram-negative bacteria that can be distinguished by their collective morphological and metabolic diversity.

Segmented filamentous bacteria

(SFB). Gram-positive, spore-forming, non-culturable, Clostridia-related bacteria, provisionally named Candidatus Savagella (of the Clostridiaceae family), that closely adhere to the small intestinal epithelium in various vertebrates and that stimulate immune responses.

TRUC model

(Tbx21−/−Rag2−/− ulcerative colitis model). A mouse model of inflammatory bowel disease that resembles human ulcerative colitis, wherein conventionally-raised mice that lack T-bet and V(D)J recombination-activating protein 2 (RAG2) spontaneously develop an aggressive, highly penetrant, communicable form of colitis.

Type VI secretion system

(T6SS). A protein structure that is used by Gram-negative bacteria to translocate effector proteins that are commonly involved in virulence and bacterial competition into other prokaryotic and eukaryotic cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buffie, C., Pamer, E. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13, 790–801 (2013). https://doi.org/10.1038/nri3535

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3535

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing