Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications

A Corrigendum to this article was published on 06 August 2010

Key Points

  • Fc receptor IIB for IgG (FcγRIIB) is the only inhibitory Fc receptor, is expressed on many cell types in the immune system and controls humoral responses, pro-inflammatory cytokine release, antigen uptake and presentation, immune complex handling and many other functions.

  • A role for FcγRIIB in controlling B cell tolerance and autoimmunity has been suggested by studies using FcγRIIB-deficient mice and confirmed by in vivo overexpression studies.

  • Spontaneous polymorphic variants alter the expression and/or function of FcγRIIB in both mice and humans, and have been associated with systemic lupus erythematosus (SLE) and other autoimmune diseases.

  • FcγRIIB balances bacterial clearance and the risk of septic shock in mouse models.

  • Genetic studies have shown that an inhibitory, SLE-associated polymorphism of FcγRIIB can protect children from severe malaria, which could drive the high frequency of this polymorphism observed in sub-Saharan Africa and Southeast Asia, and thus begin to explain the increased susceptibility to SLE seen in people of African and Asian ethnicity.

  • The immunosuppressive effect of intravenous immunoglobulin is at least in part dependent on FcγRIIB, and the receptor itself is being investigated as a therapeutic target.

Abstract

FcγRIIB is the only inhibitory Fc receptor. It controls many aspects of immune and inflammatory responses, and variation in the gene encoding this protein has long been associated with susceptibility to autoimmune disease, particularly systemic lupus erythematosus (SLE). FcγRIIB is also involved in the complex regulation of defence against infection. A loss-of-function polymorphism in FcγRIIB protects against severe malaria, the investigation of which is beginning to clarify the evolutionary pressures that drive ethnic variation in autoimmunity. Our increased understanding of the function of FcγRIIB also has potentially far-reaching therapeutic implications, being involved in the mechanism of action of intravenous immunoglobulin, controlling the efficacy of monoclonal antibody therapy and providing a direct therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure, cellular distribution and IgG isotype-binding affinity of human activating and inhibitory FcγRs.
Figure 2: The functions of FcγRIIB.
Figure 3: Mouse Fcgr2b polymorphisms.
Figure 4: Human FCGR2B polymorphisms.
Figure 5: Potential mechanisms by which FcγRIIB might contribute to the pathogenesis of systemic lupus erythematosus.
Figure 6: The proven and potential roles of FcγRIIB in defence against malarial infection.

Similar content being viewed by others

References

  1. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors as regulators of immune responses. Nature Rev. Immunol. 8, 34–47 (2008).

    Article  CAS  Google Scholar 

  2. Perez, L. G., Costa, M. R., Todd, C. A., Haynes, B. F. & Montefiori, D. C. Utilization of immunoglobulin G Fc receptors by human immunodeficiency virus type 1: a specific role for antibodies against the membrane-proximal external region of gp41. J. Virol. 83, 7397–7410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Verma, A. et al. Analysis of the Fcγ receptor-dependent component of neutralization measured by anthrax toxin neutralization assays. Clin. Vaccine Immunol. 16, 1405–1412 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bharadwaj, D., Stein, M. P., Volzer, M., Mold, C. & Du Clos, T. W. The major receptor for C-reactive protein on leukocytes is fcγ receptor II. J. Exp. Med. 190, 585–590 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu, J. et al. Structural recognition and functional activation of FcγR by innate pentraxins. Nature 456, 989–992 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sinclair, N. R. Regulation of the immune response. I. Reduction in ability of specific antibody to inhibit long-lasting IgG immunological priming after removal of the Fc fragment. J. Exp. Med. 129, 1183–1201 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sidman, C. L. & Unanue, E. R. Control of B-lymphocyte function. I. Inactivation of mitogenesis by interactions with surface immunoglobulin and Fc-receptor molecules. J. Exp. Med. 144, 882–896 (1976).

    Article  CAS  PubMed  Google Scholar 

  8. Phillips, N. E. & Parker, D. C. Cross-linking of B lymphocyte Fcγ receptors and membrane immunoglobulin inhibits anti-immunoglobulin-induced blastogenesis. J. Immunol. 132, 627–632 (1984). Papers 6–8 describe some of the early experiments establishing the immunosuppressive effect of the Fc region of IgG and show that this effect is mediated through an FcR.

    CAS  PubMed  Google Scholar 

  9. Amigorena, S., Bonnerot, C., Choquet, D., Fridman, W. H. & Teillaud, J. L. Fcγ RII expression in resting and activated B lymphocytes. Eur. J. Immunol. 19, 1379–1385 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Ravetch, J. V. & Kinet, J. P. Fc receptors. Annu. Rev. Immunol. 9, 457–492 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Daeron, M. et al. Distinct intracytoplasmic sequences are required for endocytosis and phagocytosis via murine Fcγ RII in mast cells. Int. Immunol. 5, 1393–1401 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Qin, D. et al. Fcγ receptor IIB on follicular dendritic cells regulates the B cell recall response. J. Immunol. 164, 6268–6275 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Barrington, R. A., Pozdnyakova, O., Zafari, M. R., Benjamin, C. D. & Carroll, M. C. B lymphocyte memory: role of stromal cell complement and FcγRIIB receptors. J. Exp. Med. 196, 1189–1199 (2002).

    Article  CAS  Google Scholar 

  14. Ravetch, J. V. et al. Structural heterogeneity and functional domains of murine immunoglobulin G Fc receptors. Science 234, 718–725 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Brooks, D. G., Qiu, W. Q., Luster, A. D. & Ravetch, J. V. Structure and expression of human IgG FcRII (CD32). Functional heterogeneity is encoded by the alternatively spliced products of multiple genes. J. Exp. Med. 170, 1369–1385 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Stuart, S. G. et al. Human IgG Fc receptor (hFcRII; CD32) exists as multiple isoforms in macrophages, lymphocytes and IgG-transporting placental epithelium. EMBO J. 8, 3657–3666 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hogarth, P. M. et al. Structure of the mouse βFcγ receptor II gene. J. Immunol. 146, 369–376 (1991). Together with 14, this is an important early paper describing FcγRs.

    CAS  PubMed  Google Scholar 

  18. Joshi, T., Ganesan, L. P., Cao, X. & Tridandapani, S. Molecular analysis of expression and function of hFcγRIIbl and b2 isoforms in myeloid cells. Mol. Immunol. 43, 839–850 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Miettinen, H. M., Rose, J. K. & Mellman, I. Fc receptor isoforms exhibit distinct abilities for coated pit localization as a result of cytoplasmic domain heterogeneity. Cell 58, 317–327 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Matter, K., Yamamoto, E. M. & Mellman, I. Structural requirements and sequence motifs for polarized sorting and endocytosis of LDL and Fc receptors in MDCK cells. J. Cell Biol. 126, 991–1004 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Hunziker, W. & Fumey, C. A di-leucine motif mediates endocytosis and basolateral sorting of macrophage IgG Fc receptors in MDCK cells. EMBO J. 13, 2963–2969 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miettinen, H. M., Matter, K., Hunziker, W., Rose, J. K. & Mellman, I. Fc receptor endocytosis is controlled by a cytoplasmic domain determinant that actively prevents coated pit localization. J. Cell Biol. 116, 875–888 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Tartour, E. et al. Identification, in mouse macrophages and in serum, of a soluble receptor for the Fc portion of IgG (Fcγ R.) encoded by an alternatively spliced transcript of the Fcγ RII gene. Int. Immunol. 5, 859–868 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Esposito-Farese, M. E. et al. Membrane and soluble Fcγ RII/III modulate the antigen-presenting capacity of murine dendritic epidermal Langerhans cells for IgG-complexed antigens. J. Immunol. 155, 1725–1736 (1995).

    CAS  PubMed  Google Scholar 

  25. Sautes, C. et al. Soluble Fcγ receptors II (FcγRII) are generated by cleavage of membrane FcγRII. Eur. J. Immunol. 21, 231–234 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Varin, N. et al. Recombinant soluble receptors for the Fcγ portion inhibit antibody production in vitro. Eur. J. Immunol. 19, 2263–2268 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Amigorena, S. et al. Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B lymphocytes. Science 256, 1808–1812 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Muta, T. et al. A 13-amino-acid motif in the cytoplasmic domain of Fcγ RIIB modulates B-cell receptor signalling. Nature 369, 340. (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Malbec, O. et al. Fc epsilon receptor I-associated lyn-dependent phosphorylation of Fcγ receptor IIB during negative regulation of mast cell activation. J. Immunol. 160, 1647–1658 (1998).

    CAS  PubMed  Google Scholar 

  30. Katsumata, O. et al. Association of FcγRII with low-density detergent-resistant membranes is important for cross-linking-dependent initiation of the tyrosine phosphorylation pathway and superoxide generation. J. Immunol. 167, 5814–5823 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kwiatkowska, K. & Sobota, A. The clustered Fcγ receptor II is recruited to Lyn-containing membrane domains and undergoes phosphorylation in a cholesterol-dependent manner. Eur. J. Immunol. 31, 989–998 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Ono, M., Bolland, S., Tempst, P. & Ravetch, J. V. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FcγRIIB. Nature 383, 263–266 (1996). This report shows that the inhibitory effect of FcγRIIB is mediated by SHIP.

    Article  CAS  PubMed  Google Scholar 

  33. Ono, M. et al. Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell 90, 293–301 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Pearse, R. N. et al. SHIP recruitment attenuates Fcγ RIIB-induced B cell apoptosis. Immunity 10, 753–760 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Tzeng, S. J., Bolland, S., Inabe, K., Kurosaki, T. & Pierce, S. K. The B cell inhibitory Fc receptor triggers apoptosis by a novel c-Abl family kinase-dependent pathway. J. Biol. Chem. 280, 35247–35254 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Carter, N. A. & Harnett, M. M. Dissection of the signalling mechanisms underlying FcγRIIB-mediated apoptosis of mature B-cells. Biochem. Soc. Trans. 32, 973–975 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Brauweiler, A. M. & Cambier, J. C. Autonomous SHIP-dependent FcγR signaling in pre-B cells leads to inhibition of cell migration and induction of cell death. Immunol. Lett. 92, 75–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Kato, I., Takai, T. & Kudo, A. The pre-B cell receptor signaling for apoptosis is negatively regulated by Fcγ RIIB. J. Immunol. 168, 629–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Fukuyama, H., Nimmerjahn, F. & Ravetch, J. V. The inhibitory Fcγ receptor modulates autoimmunity by limiting the accumulation of immunoglobulin G+ anti-DNA plasma cells. Nature Immunol. 6, 99–106 (2005).

    Article  CAS  Google Scholar 

  40. Xiang, Z. et al. FcγRIIb controls bone marrow plasma cell persistence and apoptosis. Nature Immunol. 8, 419–429 (2007). This, and reference 34, shows that FcγRIIB can mediate B cell apoptosis.

    Article  CAS  Google Scholar 

  41. Takai, T., Ono, M., Hikida, M., Ohmori, H. & Ravetch, J. V. Augmented humoral and anaphylactic responses in Fcγ RII-deficient mice. Nature 379, 346–349 (1996). This reference describes FcγRIIB-deficient mice, confirming the inhibitory function of this receptor.

    Article  CAS  PubMed  Google Scholar 

  42. Brownlie, R. J. et al. Distinct cell-specific control of autoimmunity and infection by FcγRIIb. J. Exp. Med. 205, 883–895 (2008). A paper showing that modest over-expression of FcγRIIB on B cell can suppress autoimmunity (see also reference 107).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nimmerjahn, F. & Ravetch, J. V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310, 1510–1512 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Nimmerjahn, F., Bruhns, P., Horiuchi, K. & Ravetch, J. V. FcγRIV: a novel FcR with distinct IgG subclass specificity. Immunity 23, 41–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kalergis, A. M. & Ravetch, J. V. Inducing tumor immunity through the selective engagement of activating Fcγ receptors on dendritic cells. J. Exp. Med. 195, 1653–1659 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boruchov, A. M. et al. Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J. Clin. Invest. 115, 2914–2923 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dhodapkar, K. M. et al. Selective blockade of inhibitory Fcγ receptor enables human dendritic cell maturation with IL-12p70 production and immunity to antibody-coated tumor cells. Proc. Natl Acad. Sci. USA 102, 2910–2915 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dhodapkar, K. M. et al. Selective blockade of the inhibitory Fcγ receptor (FcγRIIB) in human dendritic cells and monocytes induces a type I interferon response program. J. Exp. Med. 204, 1359–1369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schifferli, J. A. & Taylor, R. P. Physiological and pathological aspects of circulating immune complexes. Kidney Int. 35, 993–1003 (1989).

    Article  CAS  PubMed  Google Scholar 

  50. Bergtold, A., Desai, D. D., Gavhane, A. & Clynes, R. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity 23, 503–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Clynes, R. et al. Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J. Exp. Med. 189, 179–185 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yuasa, T. et al. Deletion of fcγ receptor IIB renders H-2b mice susceptible to collagen-induced arthritis. J. Exp. Med. 189, 187–194 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Clatworthy, M. R. & Smith, K. G. C. FcγRIIb balances efficient pathogen clearance and the cytokine-mediated consequences of sepsis. J. Exp. Med. 199, 717–723 (2004). A paper showing that FcγRIIB has a complex effect on responses to infection, balancing the capacity to clear pathogen with the risk of excessive inflammation and septic shock.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Y. et al. Immune complex/Ig negatively regulate TLR4-triggered inflammatory response in macrophages through Fcγ RIIb-dependent PGE2 production. J. Immunol. 182, 554–562 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. van Lent, P. et al. The inhibitory receptor FcγRII reduces joint inflammation and destruction in experimental immune complex-mediated arthritides not only by inhibition of FcγRI/III but also by efficient clearance and endocytosis of immune complexes. Am. J. Pathol. 163, 1839–1848 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Daeron, M., Malbec, O., Latour, S., Arock, M. & Fridman, W. H. Regulation of high-affinity IgE receptor-mediated mast cell activation by murine low-affinity IgG receptors. J. Clin. Invest. 95, 577–585 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fong, D. C. et al. Selective in vivo recruitment of the phosphatidylinositol phosphatase SHIP by phosphorylated FcγRIIB during negative regulation of IgE-dependent mouse mast cell activation. Immunol. Lett. 54, 83–91 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Kepley, C. L. et al. Negative regulation of FcɛRI signaling by FcγRII costimulation in human blood basophils. J. Allergy Clin. Immunol. 106, 337–348 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Malbec, O., Fridman, W. H. & Daeron, M. Negative regulation of c-kit-mediated cell proliferation by Fcγ RIIB. J. Immunol. 162, 4424–4429 (1999).

    CAS  PubMed  Google Scholar 

  60. Pricop, L. et al. Differential modulation of stimulatory and inhibitory Fcγ receptors on human monocytes by Th1 and Th2 cytokines. J. Immunol. 166, 531–537 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. van Mirre, E. et al. Neutrophil responsiveness to IgG, as determined by fixed ratios of mRNA levels for activating and inhibitory FcγRII (CD32), is stable over time and unaffected by cytokines. Blood 108, 584–590 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Willcocks, L. C. et al. Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake. J. Exp. Med. 205, 1573–1582 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rosales, C. & Brown, E. J. Signal transduction by neutrophil immunoglobulin G Fc receptors. Dissociation of intracytoplasmic calcium concentration rise from inositol 1,4,5-trisphosphate. J. Biol. Chem. 267, 5265–5271 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Zhou, M. J. & Brown, E. J. CR3 (Mac-1, αM β2, CD11b/CD18) and FcγRIII cooperate in generation of a neutrophil respiratory burst: requirement for FcγRIII and tyrosine phosphorylation. J. Cell Biol. 125, 1407–1416 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Coxon, A. et al. FcγRIII mediates neutrophil recruitment to immune complexes. A mechanism for neutrophil accumulation in immune-mediated inflammation. Immunity 14, 693–704 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Gjertsson, I., Kleinau, S. & Tarkowski, A. The impact of Fcγ receptors on Staphylococcus aureus infection. Microb. Pathog. 33, 145–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Nakamura, A. et al. Fcγ receptor IIB-deficient mice develop Goodpasture's syndrome upon immunization with type IV collagen: a novel murine model for autoimmune glomerular basement membrane disease. J. Exp. Med. 191, 899–906 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Snapper, C. M., Hooley, J. J., Atasoy, U., Finkelman, F. D. & Paul, W. E. Differential regulation of murine B cell FcγRII expression by CD4+ T helper subsets. J. Immunol. 143, 2133–2141 (1989).

    CAS  PubMed  Google Scholar 

  69. Rudge, E. R., Cutler, A. J., Pritchard, N. R. & Smith, K. G. C. Interleukin-4 reduces expression of inhibitory receptors on B cells and abolishes CD22 and FcγRII-mediated B cell suppression. J. Exp. Med. 195, 1079–1085 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tridandapani, S. et al. Regulated expression and inhibitory function of Fcγ RIIb in human monocytic cells. J. Biol. Chem. 277, 5082–5089 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Shushakova, N. et al. C5a anaphylatoxin is a major regulator of activating versus inhibitory FcγRs in immune complex-induced lung disease. J. Clin. Invest. 110, 1823–1830 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pritchard, N. R. et al. Autoimmune-prone mice share a promoter haplotype associated with reduced expression and function of the Fc receptor FcγRII. Curr. Biol. 10, 227–230 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Bonnerot, C. et al. Methylation in the 5′ region of the murine βFcγ R gene regulates the expression of Fc γ receptor II. J. Immunol. 141, 1026–1033 (1988).

    CAS  PubMed  Google Scholar 

  74. Bonnerot, C., Choukroun, V., Marloie, M. A. & Fridman, W. H. Two distinct regions of the mouse βFcγ R gene control its transcription. Immunobiology 185, 222–234 (1992).

    Article  CAS  PubMed  Google Scholar 

  75. Hor, S., Ziv, T., Admon, A. & Lehner, P. J. Stable isotope labeling by amino acids in cell culture and differential plasma membrane proteome quantitation identify new substrates for the MARCH9 transmembrane E3 ligase. Mol. Cell Proteomics 8, 1959–1971 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sondermann, P., Huber, R., Oosthuizen, V. & Jacob, U. The 3.2-A crystal structure of the human IgG1 Fc fragment-FcγRIII complex. Nature 406, 267–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Bruhns, P. et al. Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood 113, 3716–3725 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Willcocks, L. C., Smith, K. G. & Clatworthy, M. R. Low-affinity Fcγ receptors, autoimmunity and infection. Expert Rev. Mol. Med. 11, e24 (2009).

    Article  PubMed  Google Scholar 

  79. Matsumiya, S. et al. Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. J. Mol. Biol. 368, 767–779 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Boyd, P. N., Lines, A. C. & Patel, A. K. The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol. Immunol. 32, 1311–1318 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Kaneko, Y., Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Warmerdam, P. A., Nabben, N. M., van de Graaf, S. A., van de Winkel, J. G. & Capel, P. J. The human low affinity immunoglobulin G. Fc receptor IIC gene is a result of an unequal crossover event. J. Biol. Chem. 268, 7346–7349 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Bailey, J. A. et al. Recent segmental duplications in the human genome. Science 297, 1003–1007 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Nimmerjahn, F. & Ravetch, J. V. Fc-receptors as regulators of immunity. Adv. Immunol. 96, 179–204 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Rogers, K. A., Scinicariello, F. & Attanasio, R. IgG Fc receptor III homologues in nonhuman primate species: genetic characterization and ligand interactions. J. Immunol. 177, 3848–3856 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Zhou, X. J. et al. Copy number variation of FCGR3A rather than FCGR3B and FCGR2B is associated with susceptibility to anti-GBM disease. Int. Immunol. 22, 45–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Hastings, P. J., Lupski, J. R., Rosenberg, S. M. & Ira, G. Mechanisms of change in gene copy number. Nature Rev. Genet. 10, 551–564 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Traherne, J. A. et al. Mechanisms of copy number variation and hybrid gene formation in the KIR immune gene complex. Hum. Mol. Genet. 19, 737–751 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Luan, J. J. et al. Defective FcγRII gene expression in macrophages of NOD mice: genetic linkage with up-regulation of IgG1 and IgG2b in serum. J. Immunol. 157, 4707–4716 (1996).

    CAS  PubMed  Google Scholar 

  90. Jiang, Y. et al. Polymorphisms in IgG Fc receptor IIB regulatory regions associated with autoimmune susceptibility. Immunogenetics 51, 429–435 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Xiu, Y. et al. Transcriptional regulation of Fcgr2b gene by polymorphic promoter region and its contribution to humoral immune responses. J. Immunol. 169, 4340–4346 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Rahman, Z. S. et al. Expression of the autoimmune Fcgr2b NZW allele fails to be upregulated in germinal center B cells and is associated with increased IgG production. Genes Immun. 8, 604–612 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Hibbs, M. L., Hogarth, P. M. & McKenzie, I. F. The mouse Ly-17 locus identifies a polymorphism of the Fc receptor. Immunogenetics 22, 335–348 (1985).

    Article  CAS  PubMed  Google Scholar 

  94. Slingsby, J. H., Hogarth, M. B., Walport, M. J. & Morley, B. J. Polymorphism in the Ly-17 alloantigenic system of the mouse FcgRII gene. Immunogenetics 46, 361–362 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Su, K. et al. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcγRIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus. J. Immunol. 172, 7186–7191 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Su, K. et al. Expression profile of FcγRIIb on leukocytes and its dysregulation in systemic lupus erythematosus. J. Immunol. 178, 3272–3280 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Blank, M. C. et al. Decreased transcription of the human FCGR2B gene mediated by the −343 G/C promoter polymorphism and association with systemic lupus erythematosus. Hum. Genet. 117, 220–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Kyogoku, C. et al. Fcγ receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum. 46, 1242–1254 (2002). The paper is the first to describe an association between a naturally occurring polymorphism in FcγRIIB and human disease.

    Article  CAS  PubMed  Google Scholar 

  99. Willcocks, L. et al. A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematosus. Proc. Natl Acad. Sci. USA. 12 April 2010 (doi:10.1073/pnas.0915133107).

    Article  CAS  Google Scholar 

  100. Floto, R. A. et al. Loss of function of a lupus-associated FcγRIIb polymorphism through exclusion from lipid rafts. Nature Med. 11, 1056–1058 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Kono, H. et al. FcγRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum. Mol. Genet. 14, 2881–2892 (2005). Papers 100 and 101 provide a mechanism to explain the association of the FcγRIIBT232 polymorphism with disease.

    Article  CAS  PubMed  Google Scholar 

  102. Clatworthy, M. R. et al. Systemic lupus erythematosus-associated defects in the inhibitory receptor FcγRIIb reduce susceptibility to malaria. Proc. Natl Acad. Sci. USA 104, 7169–7174 (2007). This paper, together with reference 99, describes how the SLE-associated FcγRIIBT232 polymorphism protects children from severe malaria and together are beginning to explain the ethnic differences in SLE susceptibility.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Siriboonrit, U. et al. Association of Fcγ receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens 61, 374–383 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Goodnow, C. C., Sprent, J., Fazekas de St. Groth, B. & Vinuesa, C. G. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435, 590–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Suzuki, Y. et al. Distinct contribution of Fc receptors and angiotensin II-dependent pathways in anti-GBM glomerulonephritis. Kidney Int. 54, 1166–1174 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Bolland, S. & Ravetch, J. V. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity 13, 277–285 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. McGaha, T. L., Sorrentino, B. & Ravetch, J. V. Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 307, 590–593 (2005). This paper shows that restoring FcγRIIB expression in (NZB × NZW) F1 mice can prevent SLE (see also reference 42).

    Article  CAS  PubMed  Google Scholar 

  108. Wakeland, E. K., Liu, K., Graham, R. R. & Behrens, T. W. Delineating the genetic basis of systemic lupus erythematosus. Immunity 15, 397–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Jiang, Y. et al. Genetically determined aberrant down-regulation of FcγRIIB1 in germinal center B cells associated with hyper-IgG and IgG autoantibodies in murine systemic lupus erythematosus. Int. Immunol. 11, 1685–1691 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Paul, E., Nelde, A., Verschoor, A. & Carroll, M. C. Follicular exclusion of autoreactive B cells requires FcγRIIb. Int. Immunol. 19, 365–373 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Li, X. et al. A novel polymorphism in the Fcγ receptor IIB (CD32B) transmembrane region alters receptor signaling. Arthritis Rheum. 48, 3242–3252 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Lau, C. S., Yin, G. & Mok, M. Y. Ethnic and geographical differences in systemic lupus erythematosus: an overview. Lupus 15, 715–719 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Mackay, M. et al. Selective dysregulation of the FcγIIB receptor on memory B cells in SLE. J. Exp. Med. 203, 2157–2164 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Carreno, L. J., Pacheco, R., Gutierrez, M. A., Jacobelli, S. & Kalergis, A. M. Disease activity in systemic lupus erythematosus is associated with an altered expression of low-affinity Fcγ receptors and costimulatory molecules on dendritic cells. Immunology 128, 334–341 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Blom, A. B., van Lent, P. L., Holthuysen, A. E., Jacobs, C. & van den Berg, W. B. Skewed balance in basal expression and regulation of activating v inhibitory Fcγ receptors in macrophages of collagen induced arthritis sensitive mice. Ann. Rheum. Dis. 62, 465–471 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. van Venrooij, W. J., van Beers, J. J. & Pruijn, G. J. Anti-CCP antibody, a marker for the early detection of rheumatoid arthritis. Ann. N. Y. Acad. Sci. 1143, 268–285 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Radstake, T. R. et al. The functional variant of the inhibitory Fcγ receptor IIb (CD32B) is associated with the rate of radiologic joint damage and dendritic cell function in rheumatoid arthritis. Arthritis Rheum. 54, 3828–3837 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Wenink, M. H. et al. The inhibitory FcγIIb receptor dampens TLR4-mediated immune responses and is selectively up-regulated on dendritic cells from rheumatoid arthritis patients with quiescent disease. J. Immunol. 183, 4509–4520 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Iruretagoyena, M. I. et al. Activating and inhibitory Fcγ receptors can differentially modulate T cell-mediated autoimmunity. Eur. J. Immunol. 38, 2241–2250 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Tackenberg, B. et al. Impaired inhibitory Fcγ receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc. Natl Acad. Sci. USA 106, 4788–4792 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bruin, M. et al. Platelet count, previous infection and FCGR2B genotype predict development of chronic disease in newly diagnosed idiopathic thrombocytopenia in childhood: results of a prospective study. Br. J. Haematol. 127, 561–567 (2004).

    Article  PubMed  Google Scholar 

  122. Asahi, A. et al. Helicobacter pylori eradication shifts monocyte Fcγ receptor balance toward inhibitory FcγRIIB in immune thrombocytopenic purpura patients. J. Clin. Invest. 118, 2939–2949 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Musher, D. M. et al. Natural and vaccine-related immunity to Streptococcus pneumoniae. J. Infect. Dis. 154, 245–256 (1986).

    Article  CAS  PubMed  Google Scholar 

  124. Maglione, P. J., Xu, J., Casadevall, A. & Chan, J. Fcγ receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection. J. Immunol. 180, 3329–3338 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Uppington, H. et al. Effect of immune serum and role of individual Fcγ receptors on the intracellular distribution and survival of Salmonella enterica serovar Typhimurium in murine macrophages. Immunology 119, 147–158 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Da Silva, D. M., Fausch, S. C., Verbeek, J. S. & Kast, W. M. Uptake of human papillomavirus virus-like particles by dendritic cells is mediated by Fcγ receptors and contributes to acquisition of T cell immunity. J. Immunol. 178, 7587–7597 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Yasuda, K., Sugita, N., Kobayashi, T., Yamamoto, K. & Yoshie, H. FcγRIIB gene polymorphisms in Japanese periodontitis patients. Genes Immun. 4, 541–546 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Kumaratilake, L. M. et al. A synthetic tumor necrosis factor-α agonist peptide enhances human polymorphonuclear leukocyte-mediated killing of Plasmodium falciparum in vitro and suppresses Plasmodium chabaudi infection in mice. J. Clin. Invest. 95, 2315–2323 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Muniz-Junqueira, M. I., dos Santos-Neto, L. L. & Tosta, C. E. Influence of tumor necrosis factor-α on the ability of monocytes and lymphocytes to destroy intraerythrocytic Plasmodium falciparum in vitro. Cell. Immunol. 208, 73–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Kwiatkowski, D. P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 77, 171–192 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Williams, T. N. et al. Both heterozygous and homozygous α+ thalassemias protect against severe and fatal Plasmodium falciparum malaria on the coast of Kenya. Blood 106, 368–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Wijngaarden, S. et al. A shift in the balance of inhibitory and activating Fcγ receptors on monocytes toward the inhibitory Fcγ receptor IIb is associated with prevention of monocyte activation in rheumatoid arthritis. Arthritis Rheum. 50, 3878–3887 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Negi, V. S. et al. Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J. Clin. Immunol. 27, 233–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Debre, M. et al. Infusion of Fcγ fragments for treatment of children with acute immune thrombocytopenic purpura. Lancet 342, 945–949 (1993). This paper, together with 81, implicates Fc region sialylation and FcγRIIB in the immunosuppressive action of IVIG.

    Article  CAS  PubMed  Google Scholar 

  135. Samuelsson, A., Towers, T. L. & Ravetch, J. V. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291, 484–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Crow, A. R. et al. IVIg-mediated amelioration of murine ITP via FcγRIIB is independent of SHIP1, SHP-1, and Btk activity. Blood 102, 558–560 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Kaneko, Y., Nimmerjahn, F., Madaio, M. P. & Ravetch, J. V. Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J. Exp. Med. 203, 789–797 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bruhns, P., Samuelsson, A., Pollard, J. W. & Ravetch, J. V. Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 18, 573–581 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Anthony, R. M., Wermeling, F., Karlsson, M. C. & Ravetch, J. V. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc. Natl Acad. Sci. USA 105, 19571–19578 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Siragam, V. et al. Intravenous immunoglobulin ameliorates ITP via activating Fcγ receptors on dendritic cells. Nature Med. 12, 688–692 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Routier, F. H. et al. Quantitation of the oligosaccharides of human serum IgG from patients with rheumatoid arthritis: a critical evaluation of different methods. J. Immunol. Methods 213, 113–130 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Belostocki, K. et al. Infliximab treatment shifts the balance between stimulatory and inhibitory Fcγ receptor type II isoforms on neutrophils in patients with rheumatoid arthritis. Arthritis Rheum. 58, 384–388 (2008).

    Article  PubMed  Google Scholar 

  143. Cartron, G. et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 99, 754–758 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nature Med. 6, 443–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Zhang, Z., Zhang, M., Ravetch, J. V., Goldman, C. & Waldmann, T. A. Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD2 monoclonal antibody, MEDI-507. Blood 102, 284–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Uchida, J. et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J. Exp. Med. 199, 1659–1669 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shields, R. L. et al. High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J. Biol. Chem. 276, 6591–6604 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Lazar, G. A. et al. Engineered antibody Fc variants with enhanced effector function. Proc. Natl Acad. Sci. USA 103, 4005–4010 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ferrara, C., Stuart, F., Sondermann, P., Brunker, P. & Umana, P. The carbohydrate at FcγRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J. Biol. Chem. 281, 5032–5036 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Rankin, C. T. et al. CD32B, the human inhibitory Fc-γ receptor IIB, as a target for monoclonal antibody therapy of B-cell lymphoma. Blood 108, 2384–2391 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Zhou, P. et al. CD32B is highly expressed on clonal plasma cells from patients with systemic light-chain amyloidosis and provides a target for monoclonal antibody-based therapy. Blood 111, 3403–3406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tam, S. W., Demissie, S., Thomas, D. & Daeron, M. A bispecific antibody against human IgE and human FcγRII that inhibits antigen-induced histamine release by human mast cells and basophils. Allergy 59, 772–780 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Allen, L. C., Kepley, C. L., Saxon, A. & Zhang, K. Modifications to an Fcγ-Fcɛ fusion protein alter its effectiveness in the inhibition of FcɛRI-mediated functions. J. Allergy Clin. Immunol. 120, 462–468 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Mertsching, E. et al. A mouse Fcγ-Fcepsilon protein that inhibits mast cells through activation of FcγRIIB, SH2 domain-containing inositol phosphatase 1, and SH2 domain-containing protein tyrosine phosphatases. J. Allergy Clin. Immunol. 121, 441–447 e445 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Van Scott, M. R. et al. Systemic administration of an Fcγ-Fcɛ-fusion protein in house dust mite sensitive nonhuman primates. Clin. Immunol. 128, 340–348 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Werwitzke, S. et al. Treatment of lupus-prone NZB/NZW F1 mice with recombinant soluble Fcγ receptor II (CD32). Ann. Rheum. Dis. 67, 154–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Wandstrat, A. E. et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 21, 769–780 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Jorgensen T. N. et al. Development of murine lupus involves the combined genetic contribution of the SLAM and FcγR intervals within the Nba2 autoimmune susceptibility locus. J. Immunol. 184, 775–786 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Bygrave, A. E. et al. Spontaneous autoimmunity in 129 and C57BL/6 mice-implications for autoimmunity described in gene-targeted mice. PLoS Biol. 2, e243 (2004). This paper describes how the telomeric region of chromosome 1 from the 129 mouse strain predisposes to autoimmunity, highlighting the complex nature of the interaction between the region as a whole and autoimmunity, which must be taken into account when considering the role of FcγRIIB in mouse models of SLE.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Carlucci, F. et al. Genetic dissection of spontaneous autoimmunity driven by 129-derived chromosome 1 loci when expressed on C57BL/6 mice. J. Immunol. 178, 2352–2360 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Bickerstaff, M. C. et al. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nature Med. 5, 694–697 (1999).

    Article  CAS  PubMed  Google Scholar 

  162. Wu, X. et al. A role for the Cr2 gene in modifying autoantibody production in systemic lupus erythematosus. J. Immunol. 169, 1587–1592 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Botto, M. C1q knock-out mice for the study of complement deficiency in autoimmune disease. Exp. Clin. Immunogenet. 15, 231–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  164. Sohn, H. W., Pierce, S. K. & Tzeng, S. J. Live cell imaging reveals that the inhibitory FcγRIIB destabilizes B cell receptor membrane-lipid interactions and blocks immune synapse formation. J. Immunol. 180, 793–799 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Liu, W., Sohn, H. W., Tolar, P., Meckel, T. & Pierce, S. K. Antigen-induced oligomerization of the B cell receptor is an early target of FcγRIIB inhibition. J. Immunol. 184, 1977–1989 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. El Shikh M. E., El Sayed R., Szakal A. K. & Tew J. G. Follicular dendritic cell (FDC)-FcγRIIB engagement via immune complexes induces the activated FDC phenotype associated with secondary follicle development. Eur. J. Immunol. 36, 2715–2724 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Espeli for review of the manuscript. K.G.C.S is supported by the NIHR Cambridge Biomedical Research Centre and the Wellcome Trust (programme grant number 083650/Z/07/Z) and is a Lister prize fellow. M.R.C. is supported by a Wellcome Trust Intermediate Fellowship (WT081020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth G. C. Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

anti-GBM

chronic inflammatory demyelinating polyneuropathy

ITP

multiple sclerosis

rheumatoid arthritis

SLE

type 1 diabetes

FURTHER INFORMATION

Kenneth G. C. Smith's homepage

Glossary

Immune complexes

Complexes of antigen bound to antibody and, sometimes, components of the complement system. The number of circulating immune complexes is increased in some autoimmune disorders (particularly SLE) in which they may be deposited in tissues causing inflammation and tissue damage.

Antibody-dependent cell-mediated cytotoxicity

(ADCC). A mechanism by which FcR-expressing cells kill other cells, such as virus-infected target cells, that are coated with antibodies. The Fc portions of the coating antibodies interact with the FcγR, thereby initiating a signalling cascade that results in the induction of apoptosis of the antibody-coated cell.

Acute-phase proteins

A group of proteins, the plasma concentration of which changes in response to trauma, inflammation and infection. C-reative protein is the prototypical acute-phase protein and binds phosphocholine on pathogens and apoptotic cells, opsonizing them for disposal by phagocytes by FcγR binding.

FcR common γ-chain

A membrane-associated signal adaptor protein that contains an ITAM. It is shared by FcγRI and FcγRIIIA, as well as other receptors, including collagen receptor glycoprotein IV, NKp46, ILT1 (also known as LIR7) and osteoclast-associated immunoglobulin-like receptor (OSCAR).

Follicular DCs

(FDCs). Cells with a dendritic morphology that are present within B cell follicles in secondary lymphoid tissues such as lymph nodes and spleen. They display intact antigens that are held in immune complexes on their surface, accessible to B cells. FDCs are of non-haematopoietic origin and are not related to 'conventional' DCs.

Germinal centre

A lymphoid structure that arises in B cell follicles in secondary lymphoid organs, such as spleen and lymph node, after immunization with, or exposure to, a T cell-dependent antigen. It is specialized for facilitating the development of high-affinity, long-lived plasma cells and memory B cells.

Intravenous immunoglobulin

(IVIG). A preparation of human polyclonal IgG obtained from pooled plasma samples taken from thousands of healthy blood donors. It is used as a replacement therapy for individuals with hypogammaglobulinaemia, but is also increasingly used, at much higher doses, to treat autoimmune diseases. IVIG is licensed for the treatment of idiopathic thrombocytopenic purpura, Guillain–Barré syndrome, chronic inflammatory demyelinating polyneuropathy and Kawasaki disease, and is also used in the treatment of other autoimmune diseases, including multiple sclerosis and ANCA-associated vasculitis.

Central tolerance

Immune tolerance to self antigens that is imposed during lymphocyte development in the thymus (T cells) or the bone marrow (B cells). B cells expressing a BCR that recognizes self antigen must undergo further rearrangement of antigen-receptor genes to become self tolerant or they are deleted or rendered anergic. This process does not eliminate all autoreactive lymphocytes and therefore mechanisms exist in the periphery to maintain tolerance in mature lymphocytes (peripheral tolerance).

T cell-dependent antigens

Antigens that require T cell–B cell interactions to activate B cells and produce an antibody response.

Ubiquitin E3 ligase

An enzyme that is required to attach the molecular tag ubiquitin to proteins. Depending on the position and number of ubiquitin molecules that are attached, the ubiquitin tag can target proteins for degradation in the proteasomal complex, sort them to specific subcellular compartments or modify their biological activity.

Copy number variant

(CNV). A genomic variant characterized by differences in the number of copies of specific repeated DNA fragments that range from 1 kb to several mb long and can contain entire genes.

Haplotype

A set of single nucleotide polymorphisms (SNPs) or other genetic variants in a gene or locus that are inherited together.

Systemic lupus erythematosus

(SLE). A multisystem autoimmune disease characterized by hypergammaglobulinaemia and the development of autoantibodies, including those specific for nuclear self antigens such as DNA. These antibodies form immune complexes that become deposited in tissues, including the kidneys and skin. Deposited immune complexes initiate an inflammatory response causing tissue damage. SLE is a polygenic disease, that is multiple, common polymorphisms confer disease susceptibility.

(NZB × NZW) F1 mice

The F1 generation of the cross between NZB mice and NZW mice. (NZB × NZW) F1 mice spontaneously develop a disease that closely resembles the human disease SLE.

MRL–lpr mouse

A mouse strain that spontaneously develops glomerulonephritis and other symptoms of SLE. The lpr mutation causes a defect in CD95 (also known as FAS), preventing apoptosis of activated lymphocytes. The MRL background contributes other disease-associated genetic variants.

Collagen-induced arthritis

(CIA). A model of rheumatoid arthritis. CIA develops in susceptible rodents and primates after immunization with cartilage-derived type II collagen.

Sickle cell anaemia

Sickle cell anaemia is an autosomal recessive disease in which the gene encoding the β-globin chain has a mutation resulting in an amino acid change (a valine for a glutamic acid at position 6), which leads to erythrocytes that are rigid and sickle shaped. Patients develop anaemia and sickle crises, which significantly shorten life expectancy. Heterozygotes are protected from malaria infection, resulting in the retention of this mutation in populations exposed to malaria.

Thalassaemia

Thalassaemia is an autosomal recessive genetic disorder, in which there is a mutation in the gene encoding either the α- or β-globin chains that make up haemoglobin. This leads to reduced globin chain (and hence haemoglobin) synthesis, causing anaemia of variable severity. Carriers of the thalassaemia mutations (thalassaemia trait) are protected from malaria infection. This selective advantage is thought to contribute to the persistence of this potentially harmful mutation in the human genetic pool.

Anti-idiotypic antibody

An antibody that is directed against the antigen-specific binding site of an immunoglobulin or a T cell receptor and therefore may compete with antigen for binding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, K., Clatworthy, M. FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 10, 328–343 (2010). https://doi.org/10.1038/nri2762

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2762

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing