Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms underlying weight loss after bariatric surgery

Abstract

The clinical efficacy of bariatric surgery has encouraged the scientific investigation of the gut as a major endocrine organ. Manipulation of gastrointestinal anatomy through surgery has been shown to profoundly affect the physiological and metabolic processes that control body weight and glycaemia. The most popular bariatric surgical procedures are gastric bypass, adjustable gastric banding and vertical sleeve gastrectomy. Even though these procedures were designed with the aim of causing restriction of food intake and nutrient malabsorption, evidence suggests that their contributions to weight loss are minimal. Instead, these interventions reduce body weight by decreasing hunger, increasing satiation during a meal, changing food preferences and energy expenditure. In this Review, we have explored these mechanisms as well as their mediators. The hope is that that their in-depth investigation will enable the optimization and individualization of surgical techniques, the development of equally effective but safer nonsurgical weight-loss interventions, and even the understanding of the pathophysiology of obesity itself.

Key Points

  • Bariatric surgery is the most effective treatment for weight loss and its long-term maintenance; the most commonly performed procedures are laparoscopic gastric bypass, adjustable gastric banding and vertical sleeve gastrectomy

  • Bariatric surgery improves obesity-related comorbidities and reduces overall and cardiovascular mortality

  • Gastric bypass works by reducing hunger, increasing satiation, changing food preferences and increasing diet-induced energy expenditure

  • Adjustable gastric banding works probably through the reduction in hunger, which might be mediated through vagal signalling

  • Some of the clinical and physiological effects of vertical sleeve gastrectomy are similar to gastric bypass

  • Understanding the mechanisms of action of these procedures could accelerate their optimization and the development of novel, and hopefully safer, medications for obesity and type 2 diabetes mellitus

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomical changes in bariatric surgery.
Figure 2: Schematic representation of the physiological mechanisms that underlie weight loss and glycaemic improvements after gastric bypass surgery, which has been studied more extensively compared with the other available surgical procedures.

Similar content being viewed by others

References

  1. Olbers, T., Lonroth, H., Fagevik-Olsen, M. & Lundell, L. Laparoscopic gastric bypass: development of technique, respiratory function, and long-term outcome. Obes. Surg. 13, 364–370 (2003).

    Article  PubMed  Google Scholar 

  2. Burton, P. R. & Brown, W. A. The mechanism of weight loss with laparoscopic adjustable gastric banding: induction of satiety not restriction. Int. J. Obes. (Lond) 35 (Suppl. 3), S26–S30 (2011).

    Article  Google Scholar 

  3. Scopinaro, N. Thirty-five years of biliopancreatic diversion: notes on gastrointestinal physiology to complete the published information useful for a better understanding and clinical use of the operation. Obes. Surg. 22, 427–432 (2012).

    Article  PubMed  Google Scholar 

  4. Carlin, A. M. et al. The comparative effectiveness of sleeve gastrectomy, gastric bypass, and adjustable gastric banding procedures for the treatment of morbid obesity. Ann. Surg. 257, 791–797 (2013).

    Article  PubMed  Google Scholar 

  5. O'Brien, P. E., McPhail, T., Chaston, T. B. & Dixon, J. B. Systematic review of medium-term weight loss after bariatric operations. Obes. Surg. 16, 1032–1040 (2006).

    Article  PubMed  Google Scholar 

  6. Brethauer, S. A., Hammel, J. P. & Schauer, P. R. Systematic review of sleeve gastrectomy as staging and primary bariatric procedure. Surg. Obes. Relat. Dis. 5, 469–475 (2009).

    Article  PubMed  Google Scholar 

  7. Vest, A. R., Heneghan, H. M., Agarwal, S., Schauer, P. R. & Young, J. B. Bariatric surgery and cardiovascular outcomes: a systematic review. Heart 98, 1763–1777 (2012).

    Article  PubMed  Google Scholar 

  8. Pontiroli, A. E. & Morabito, A. Long-term prevention of mortality in morbid obesity through bariatric surgery. a systematic review and meta-analysis of trials performed with gastric banding and gastric bypass. Ann. Surg. 253, 484–487 (2011).

    Article  PubMed  Google Scholar 

  9. Buchwald, H. et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am. J. Med. 122, 248–256.e245 (2009).

    Article  PubMed  Google Scholar 

  10. Flum, D. R. et al. Perioperative safety in the longitudinal assessment of bariatric surgery. N. Engl. J. Med. 361, 445–454 (2009).

    Article  PubMed  Google Scholar 

  11. Maclean, P. S., Bergouignan, A., Cornier, M. A. & Jackman, M. R. Biology's response to dieting: the impetus for weight regain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R581–R600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sumithran, P. et al. Long-term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 365, 1597–1604 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Hofmann, W., van Koningsbruggen, G. M., Stroebe, W., Ramanathan, S. & Aarts, H. As pleasure unfolds. Hedonic responses to tempting food. Psychol. Sci. 21, 1863–1870 (2010).

    Article  PubMed  Google Scholar 

  14. le Roux, C. W. et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann. Surg. 243, 108–114 (2006).

    Article  PubMed  Google Scholar 

  15. Dixon, A. F., Dixon, J. B. & O'Brien, P. E. Laparoscopic adjustable gastric banding induces prolonged satiety: a randomized blind crossover study. J. Clin. Endocrinol. Metab. 90, 813–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Miras, A. D. et al. Gastric bypass surgery for obesity decreases the reward value of a sweet-fat stimulus as assessed in a progressive ratio task. Am. J. Clin. Nutr. 96, 467–473 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Wilson-Perez, H. E. et al. The effect of vertical sleeve gastrectomy on food choice in rats. Int. J. Obes. (Lond.) 37, 288–295 (2012).

    Article  CAS  Google Scholar 

  18. Stefater, M. A. et al. Sleeve gastrectomy induces loss of weight and fat mass in obese rats, but does not affect leptin sensitivity. Gastroenterology 138, 2426–2436 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Topart, P., Becouarn, G. & Ritz, P. Pouch size after gastric bypass does not correlate with weight loss outcome. Obes. Surg. 21, 1350–1354 (2011).

    Article  PubMed  Google Scholar 

  20. Guijarro, A. et al. Characterization of weight loss and weight regain mechanisms after Roux-en-Y gastric bypass in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R1474–R1489 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S. & Schwartz, M. W. Central nervous system control of food intake and body weight. Nature 443, 289–295 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Hatoum, I. J. et al. Melanocortin-4 receptor signaling is required for weight loss after gastric bypass surgery. J. Clin. Endocrinol. Metab. 97, E1023–E1031 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Faulconbridge, L. F. et al. Changes in symptoms of depression with weight loss: results of a randomized trial. Obesity (Silver Spring) 17, 1009–1016 (2009).

    Article  PubMed Central  Google Scholar 

  24. Korner, J. et al. Differential effects of gastric bypass and banding on circulating gut hormone and leptin levels. Obesity (Silver Spring) 14, 1553–1561 (2006).

    Article  CAS  Google Scholar 

  25. Karamanakos, S. N., Vagenas, K., Kalfarentzos, F. & Alexandrides, T. K. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann. Surg. 247, 401–407 (2008).

    Article  PubMed  Google Scholar 

  26. Batterham, R. L. et al. Gut hormone PYY3–36 physiologically inhibits food intake. Nature 418, 650–654 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Sloth, B., Holst, J. J., Flint, A., Gregersen, N. T. & Astrup, A. Effects of PYY1–36 and PYY3–36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects. Am. J. Physiol. Endocrinol. Metab. 292, E1062–E1068 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Meguid, M. M., Glade, M. J. & Middleton, F. A. Weight regain after Roux-en-Y: a significant 20% complication related to PYY. Nutrition 24, 832–842 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Dirksen, C. et al. Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass. Int. J. Obes. (Lond.) http://dx.doi.org/10.1038/ijo.2013.15.

  30. Chandarana, K. et al. Diet and gastrointestinal bypass-induced weight loss: the roles of ghrelin and peptide YY. Diabetes 60, 810–818 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peterli, R. et al. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann. Surg. 250, 234–241 (2009).

    Article  PubMed  Google Scholar 

  32. Larsen, P. J., Tang-Christensen, M., Holst, J. J. & Orskov, C. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 77, 257–270 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki, K., Jayasena, C. N. & Bloom, S. R. Obesity and appetite control. Exp. Diabetes Res. 2012, 824305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Russell-Jones, D. & Gough, S. Recent advances in incretin-based therapies. Clin. Endocrinol. (Oxf.) 77, 489–499 (2012).

    Article  CAS  Google Scholar 

  35. Wilson-Perez, H. E. et al. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide-1 receptor deficiency. Diabetes http://dx.doi.org/10.2337/db12-1498.

  36. Dirksen, C. et al. Fast pouch emptying, delayed small intestinal transit, and exaggerated gut hormone responses after Roux-en-Y gastric bypass. Neurogastroenterol. Motil. 25, 346–e255 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Shah, S. et al. Prospective controlled study of effect of laparoscopic sleeve gastrectomy on small bowel transit time and gastric emptying half-time in morbidly obese patients with type 2 diabetes mellitus. Surg. Obes. Relat. Dis. 6, 152–157 (2010).

    Article  PubMed  Google Scholar 

  38. Roberge, J. N. & Brubaker, P. L. Regulation of intestinal proglucagon-derived peptide secretion by glucose-dependent insulinotropic peptide in a novel enteroendocrine loop. Endocrinology 133, 233–240 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Dar, M. S. et al. GLP-1 response to a mixed meal: what happens 10 years after Roux-en-Y gastric bypass (RYGB)? Obes. Surg. 22, 1077–1083 (2012).

    Article  PubMed  Google Scholar 

  40. Date, Y. et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141, 4255–4261 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Romero, A. et al. GOAT: the master switch for the ghrelin system? Eur. J. Endocrinol. 163, 1–8 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Cummings, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, L., Saint-Pierre, D. H. & Tache, Y. Peripheral ghrelin selectively increases Fos expression in neuropeptide Y—synthesizing neurons in mouse hypothalamic arcuate nucleus. Neurosci. Lett. 325, 47–51 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Lawrence, C. B., Snape, A. C., Baudoin, F. M. & Luckman, S. M. Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology 143, 155–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Dimitriadis, E. et al. Alterations in gut hormones after laparoscopic sleeve gastrectomy: a prospective clinical and laboratory investigational study. Ann. Surg. 257, 647–654 (2013).

    Article  PubMed  Google Scholar 

  46. Cummings, D. E. et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N. Engl. J. Med. 346, 1623–1630 (2002).

    Article  PubMed  Google Scholar 

  47. Barazzoni, R. et al. Gastric bypass does not normalize obesity-related changes in ghrelin profile and leads to higher acylated ghrelin fraction. Obesity (Silver Spring) http://dx.doi.org/10.1038/oby.2012.149.

  48. Espelund, U., Hansen, T. K., Orskov, H. & Frystyk, J. Assessment of ghrelin. APMIS Suppl. 109, 140–145 (2003).

    CAS  Google Scholar 

  49. Chambers, A. P. et al. The effects of vertical sleeve gastrectomy in rodents are ghrelin independent. Gastroenterology 144, 50–52.e5 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Korner, J. et al. Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux-en-Y gastric bypass. Int. J. Obes. (Lond.) 33, 786–795 (2009).

    Article  CAS  Google Scholar 

  51. Gribble, F. M. The gut endocrine system as a coordinator of postprandial nutrient homoeostasis. Proc. Nutr. Soc. 71, 456–462 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Seyfried, F., le Roux, C. W. & Bueter, M. Lessons learned from gastric bypass operations in rats. Obes. Facts 4, (Suppl. 1), 3–12 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bjorklund, P. et al. Is the Roux limb a determinant for meal size after gastric bypass surgery? Obes. Surg. 20, 1408–1414 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shin, A. C., Zheng, H. & Berthoud, H. R. Vagal innervation of the hepatic portal vein and liver is not necessary for Roux-en-Y gastric bypass surgery-induced hypophagia, weight loss, and hypermetabolism. Ann. Surg. 255, 294–301 (2012).

    Article  PubMed  Google Scholar 

  55. Kampe, J. et al. Neural and humoral changes associated with the adjustable gastric band: insights from a rodent model. Int. J. Obes. (Lond.) 36, 1403–1411 (2012).

    Article  CAS  Google Scholar 

  56. Burton, P. R., Brown, W. A., Laurie, C., Hebbard, G. & O'Brien, P. E. Mechanisms of bolus clearance in patients with laparoscopic adjustable gastric bands. Obes. Surg. 20, 1265–1272 (2010).

    Article  PubMed  Google Scholar 

  57. de Jong, J. R., van Ramshorst, B., Gooszen, H. G., Smout, A. J. & Tiel- Van Buul, M. M. Weight loss after laparoscopic adjustable gastric banding is not caused by altered gastric emptying. Obes. Surg. 19, 287–292 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Burton, P. R. et al. Effects of adjustable gastric bands on gastric emptying, supra- and infraband transit and satiety: a randomized double-blind crossover trial using a new technique of band visualization. Obes. Surg. 20, 1690–1697 (2010).

    Article  PubMed  Google Scholar 

  59. Burton, P. R. et al. Effects of gastric band adjustments on intraluminal pressure. Obes. Surg. 19, 1508–1514 (2009).

    Article  PubMed  Google Scholar 

  60. Heneghan, H. M., Yimcharoen, P., Brethauer, S. A., Kroh, M. & Chand, B. Influence of pouch and stoma size on weight loss after gastric bypass. Surg. Obes. Relat. Dis. 8, 408–415 (2012).

    Article  PubMed  Google Scholar 

  61. Campos, G. M. et al. Factors associated with weight loss after gastric bypass. Arch. Surg. 143, 877–883 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bueter, M. et al. Vagal sparing surgical technique but not stoma size affects body weight loss in rodent model of gastric bypass. Obes. Surg. 20, 616–622 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Madan, A. K., Tichansky, D. S. & Phillips, J. C. Does pouch size matter? Obes. Surg. 17, 317–320 (2007).

    Article  PubMed  Google Scholar 

  64. Braghetto, I. et al. Evaluation of the radiological gastric capacity and evolution of the BMI 2–3 years after sleeve gastrectomy. Obes. Surg. 19, 1262–1269 (2009).

    Article  PubMed  Google Scholar 

  65. Deguines, J. B. et al. Is the residual gastric volume after laparoscopic sleeve gastrectomy an objective criterion for adapting the treatment strategy after failure? Surg. Obes. Relat. Dis. http://dx.doi.org/10.1016/j.soard.2012.11.010.

  66. Pomerri, F. et al. Laparoscopic sleeve gastrectomy--radiological assessment of fundus size and sleeve voiding. Obes. Surg. 21, 858–863 (2011).

    Article  PubMed  Google Scholar 

  67. Langer, F. B. et al. Does gastric dilatation limit the success of sleeve gastrectomy as a sole operation for morbid obesity? Obes. Surg. 16, 166–171 (2006).

    Article  PubMed  Google Scholar 

  68. Wang, G. et al. Accelerated gastric emptying but no carbohydrate malabsorption 1 year after gastric bypass surgery (GBP). Obes. Surg. 22, 1263–1267 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Suzuki, S., Ramos, E. J., Goncalves, C. G., Chen, C. & Meguid, M. M. Changes in GI hormones and their effect on gastric emptying and transit times after Roux-en-Y gastric bypass in rat model. Surgery 138, 283–290 (2005).

    Article  PubMed  Google Scholar 

  70. Naslund, I. & Beckman, K. W. Gastric emptying rate after gastric bypass and gastroplasty. Scand. J. Gastroenterol. 22, 193–201 (1987).

    Article  CAS  PubMed  Google Scholar 

  71. Horowitz, M., Collins, P. J., Harding, P. E. & Shearman, D. J. Gastric emptying after gastric bypass. Int. J. Obes. 10, 117–121 (1986).

    CAS  PubMed  Google Scholar 

  72. Melissas, J. et al. Alterations of global gastrointestinal motility after sleeve gastrectomy: a prospective study. Ann Surg. http://dx.doi.org/10.1097/SLA.0b013e3182774522.

  73. Braghetto, I. et al. Scintigraphic evaluation of gastric emptying in obese patients submitted to sleeve gastrectomy compared to normal subjects. Obes. Surg. 19, 1515–1521 (2009).

    Article  PubMed  Google Scholar 

  74. Melissas, J. et al. Sleeve gastrectomy: a restrictive procedure? Obes. Surg. 17, 57–62 (2007).

    Article  PubMed  Google Scholar 

  75. Bernstine, H. et al. Gastric emptying is not affected by sleeve gastrectomy—scintigraphic evaluation of gastric emptying after sleeve gastrectomy without removal of the gastric antrum. Obes. Surg. 19, 293–298 (2009).

    Article  PubMed  Google Scholar 

  76. Kumar, R. et al. Fat malabsorption and increased intestinal oxalate absorption are common after Roux-en-Y gastric bypass surgery. Surgery 149, 654–661 (2011).

    Article  PubMed  Google Scholar 

  77. Odstrcil, E. A. et al. The contribution of malabsorption to the reduction in net energy absorption after long-limb Roux-en-Y gastric bypass. Am. J. Clin. Nutr. 92, 704–713 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Shin, A. C. et al. Longitudinal assessment of food intake, fecal energy loss, and energy expenditure after Roux-en-Y gastric bypass surgery in high-fat-fed obese rats. Obes. Surg. 23, 531–540 (2012).

    Article  Google Scholar 

  79. Saeidi, N. et al. Sleeve gastrectomy and Roux-en-Y gastric bypass exhibit differential effects on food preferences, nutrient absorption and energy expenditure in obese rats. Int. J. Obes. (Lond.) 36, 1396–1402 (2012).

    Article  CAS  Google Scholar 

  80. Stylopoulos, N., Hoppin, A. G. & Kaplan, L. M. Roux-en-Y gastric bypass enhances energy expenditure and extends lifespan in diet-induced obese rats. Obesity (Silver Spring) 17, 1839–1847 (2009).

    Article  Google Scholar 

  81. Cornicelli, M., Noli, G., Marinari, G. M. & Adami, G. F. Dietary habits and body weight at long-term following biliopancreatic diversion. Obes. Surg. 20, 1278–1280 (2010).

    Article  PubMed  Google Scholar 

  82. Patti, M. E. et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring) 17, 1671–1677 (2009).

    Article  CAS  Google Scholar 

  83. Pournaras, D. J. et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology 153, 3613–3619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Simonen, M. et al. Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass. Obes. Surg. 22, 1473–1480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kohli, R. et al. Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J. Clin. Endocrinol. Metab. 98, E708–E712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stefater, M. A. et al. Sleeve gastrectomy in rats improves postprandial lipid clearance by reducing intestinal triglyceride secretion. Gastroenterology 141, 939–949 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J. & Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 7, 678–693 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Ryan, K. K. et al. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology 154, 9–15 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Sarruf, D. A. et al. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 59, 1817–1824 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ogundare, M. et al. Cerebrospinal fluid steroidomics: are bioactive bile acids present in brain? J. Biol. Chem. 285, 4666–4679 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Keitel, V. et al. The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. Glia 58, 1794–1805 (2010).

    Article  PubMed  Google Scholar 

  92. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  93. Zhang, H. et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl Acad. Sci. USA 106, 2365–2370 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Furet, J. P. et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59, 3049–3057 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li, J. V. et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut 60, 1214–1223 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Liou, A. P. et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci.Transl. Med. 5, 178ra141 (2013).

    Article  CAS  Google Scholar 

  97. Kenler, H. A., Brolin, R. E. & Cody, R. P. Changes in eating behavior after horizontal gastroplasty and Roux-en-Y gastric bypass. Am. J. Clin. Nutr. 52, 87–92 (1990).

    Article  CAS  PubMed  Google Scholar 

  98. Olbers, T. et al. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann. Surg. 244, 715–722 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ernst, B., Thurnheer, M., Wilms, B. & Schultes, B. Differential changes in dietary habits after gastric bypass versus gastric banding operations. Obes. Surg. 19, 274–280 (2009).

    Article  PubMed  Google Scholar 

  100. Mathes, C. M. & Spector, A. C. Food selection and taste changes in humans after Roux-en-Y gastric bypass surgery: a direct-measures approach. Physiol. Behav. 107, 476–483 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Zheng, H. et al. Meal patterns, satiety, and food choice in a rat model of Roux-en-Y gastric bypass surgery. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1273–R1282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bueter, M. et al. Alterations of sucrose preference after Roux-en-Y gastric bypass. Physiol. Behav. 104, 709–721 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Ochner, C. N. et al. Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ann. Surg. 253, 502–507 (2011).

    Article  PubMed  Google Scholar 

  104. Ochner, C. N. et al. Relation between changes in neural responsivity and reductions in desire to eat high-calorie foods following gastric bypass surgery. Neuroscience 209, 128–135 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Ochner, C. N. et al. Neural responsivity to food cues in fasted and fed states pre and post gastric bypass surgery. Neurosci. Res. 74, 138–143 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Scholtz S. et al. Obese patients after gastric bypass surgery have lower brain hedonic responses to food than after gastric banding. Gut (in press).

  107. Dunn, J. P. et al. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res. 1350, 123–130 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Steele, K. E. et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes. Surg. 20, 369–374 (2010).

    Article  PubMed  Google Scholar 

  109. Shin, A. C., Zheng, H., Pistell, P. J. & Berthoud, H. R. Roux-en-Y gastric bypass surgery changes food reward in rats. Int. J. Obes. (Lond.) 35, 642–651 (2010).

    Article  CAS  Google Scholar 

  110. Shin, Y. K. et al. Modulation of taste sensitivity by GLP-1 signaling. J. Neurochem. 106, 455–463 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. De Silva, A. et al. The gut hormones PYY 3–36 and GLP-1 7–36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 14, 700–706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Thiele, T. E. et al. Central infusion of GLP-1, but not leptin, produces conditioned taste aversions in rats. Am. J. Physiol. 272, R726–R730 (1997).

    CAS  PubMed  Google Scholar 

  113. Halatchev, I. G. & Cone, R. D. Peripheral administration of PYY3–36 produces conditioned taste aversion in mice. Cell Metab. 1, 159–168 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Mathes, C. M. et al. Roux-en-Y gastric bypass in rats increases sucrose taste-related motivated behavior independent of pharmacological GLP-1-receptor modulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R751–R767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tack, J., Arts, J., Caenepeel, P., De Wulf, D. & Bisschops, R. Pathophysiology, diagnosis and management of postoperative dumping syndrome. Nat. Rev. Gastroenterol. Hepatol. 6, 583–590 (2009).

    Article  PubMed  Google Scholar 

  116. Mallory, G. N., Macgregor, A. M. & Rand, C. S. The influence of dumping on weight loss after gastric restrictive surgery for morbid obesity. Obes. Surg. 6, 474–478 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. le Roux, C. W. et al. Gastric bypass reduces fat intake and preference. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1057–R1066 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tamboli, R. A. et al. Body composition and energy metabolism following Roux-en-Y gastric bypass surgery. Obesity (Silver Spring) 18, 1718–1724 (2010).

    Article  CAS  Google Scholar 

  119. Carrasco, F. et al. Changes in resting energy expenditure and body composition after weight loss following Roux-en-Y gastric bypass. Obes. Surg. 17, 608–616 (2007).

    Article  PubMed  Google Scholar 

  120. Bobbioni-Harsch, E. et al. Energy economy hampers body weight loss after gastric bypass. J. Clin. Endocrinol. Metab. 85, 4695–4700 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Das, S. K. et al. Long-term changes in energy expenditure and body composition after massive weight loss induced by gastric bypass surgery. Am. J. Clin. Nutr. 78, 22–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Flancbaum, L., Choban, P. S., Bradley, L. R. & Burge, J. C. Changes in measured resting energy expenditure after Roux-en-Y gastric bypass for clinically severe obesity. Surgery 122, 943–949 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Busetto, L. et al. Relationship between energy expenditure and visceral fat accumulation in obese women submitted to adjustable silicone gastric banding (ASGB). Int. J. Obes. Relat. Metab. Disord. 19, 227–233 (1995).

    CAS  PubMed  Google Scholar 

  124. Galtier, F. et al. Resting energy expenditure and fuel metabolism following laparoscopic adjustable gastric banding in severely obese women: relationships with excess weight lost. Int. J. Obes. (Lond.) 30, 1104–1110 (2006).

    Article  CAS  Google Scholar 

  125. Faria, S. L., Faria, O. P., Cardeal Mde, A., de Gouvea, H. R. & Buffington, C. Diet-induced thermogenesis and respiratory quotient after Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 8, 797–802 (2012).

    Article  PubMed  Google Scholar 

  126. Werling, M. et al. Increased postprandial energy expenditure may explain superior long term weight loss after Roux-en-Y gastric bypass compared to vertical banded gastroplasty. PLoS ONE 8, e60280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bueter, M. et al. Gastric bypass increases energy expenditure in rats. Gastroenterology 138, 1845–1853 (2010).

    Article  PubMed  Google Scholar 

  128. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Hankir, M. et al. Increased energy expenditure in gastric bypass rats is not caused by activated brown adipose tissue. Obes. Facts 5, 349–358 (2012).

    Article  PubMed  Google Scholar 

  130. Gersin, K. S. et al. Open-label, sham-controlled trial of an endoscopic duodenojejunal bypass liner for preoperative weight loss in bariatric surgery candidates. Gastrointest. Endosc. 71, 976–982 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A. D. Miras is funded by the Medical Research Council (MRC) Research Training Fellowship G0902002 and a MRC Research Career Development Centenary Award. C. W. le Roux is funded by the Science Foundation Ireland and the Moulton Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Carel W. le Roux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miras, A., le Roux, C. Mechanisms underlying weight loss after bariatric surgery. Nat Rev Gastroenterol Hepatol 10, 575–584 (2013). https://doi.org/10.1038/nrgastro.2013.119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing