Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Arterial calcification and bone physiology: role of the bone–vascular axis

Abstract

Bone never forms without vascular interactions. This simple statement of fact does not adequately reflect the physiological and pharmacological implications of the relationship. The vasculature is the conduit for nutrient exchange between bone and the rest of the body. The vasculature provides the sustentacular niche for development of osteoblast progenitors and is the conduit for egress of bone marrow cell products arising, in turn, from the osteoblast-dependent haematopoietic niche. Importantly, the second most calcified structure in humans after the skeleton is the vasculature. Once considered a passive process of dead and dying cells, vascular calcification has emerged as an actively regulated form of tissue biomineralization. Skeletal morphogens and osteochondrogenic transcription factors are expressed by cells within the vessel wall, which regulates the deposition of vascular calcium. Osteotropic hormones, including parathyroid hormone, regulate both vascular and skeletal mineralization. Cellular, endocrine and metabolic signals that flow bidirectionally between the vasculature and bone are necessary for both bone health and vascular health. Dysmetabolic states including diabetes mellitus, uraemia and hyperlipidaemia perturb the bone–vascular axis, giving rise to devastating vascular and skeletal disease. A detailed understanding of bone–vascular interactions is necessary to address the unmet clinical needs of an increasingly aged and dysmetabolic population.

Key Points

  • Clinically important and actively regulated processes control tissue mineralization in the skeleton and the arterial vasculature

  • Bidirectional communication between the vasculature and bone—conveyed by cellular, endocrine and metabolic messengers—is critical to maintenance of bone health and vascular health

  • Dysmetabolic states, such as diabetes mellitus, uraemia and hyperlipidaemia, perturb the bone–vascular axis and give rise to vascular and skeletal disease

  • As understanding of the bone–vascular axis continues to improves, so too will our capacity to meet the clinical needs of patients with metabolic bone and cardiovascular disorders

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Consequences of arterial stiffening and impaired Windkessel physiology.
Figure 2: Atherosclerotic versus medial arterial calcification.
Figure 3: Vascular osteogenic cell origins, functions and phenotypes in arterial calcification.
Figure 4: The biphasic relationship between cardiovascular disease and calciotropic hormones.
Figure 5: Age-dependent changes in cortical blood flow of long bones.
Figure 6: Clinical promises and pitfalls of the emerging bone–vascular axis.
Figure 7: Relationships between the metabolic milieu, genetics, arteriosclerosis and musculoskeletal disease.

Similar content being viewed by others

References

  1. Zelzer, E. et al. Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 129, 1893–1904 (2002).

    CAS  PubMed  Google Scholar 

  2. Maes, C. et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev. Cell 19, 329–344 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Qing, H. et al. PTHR1 in osteocytes plays a major role in perilacunar remodeling through the activation of “osteoclastic” genes in osteocytes [abstract]. J. Bone Miner. Res. 25 (Suppl. 1), a1082 (2010).

    Google Scholar 

  4. Reeve, J. et al. Skeletal blood flow, iliac histomorphometry, and strontium kinetics in osteoporosis: a relationship between blood flow and corrected apposition rate. J. Clin. Endocrinol. Metab. 66, 1124–1131 (1988).

    CAS  PubMed  Google Scholar 

  5. Bianco, P. Bone and the hematopoietic niche: a tale of two stem cells. Blood 117, 5281–5288 (2011).

    CAS  PubMed  Google Scholar 

  6. Eash, K. J., Greenbaum, A. M., Gopalan, P. K. & Link, D. C. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J. Clin. Invest. 120, 2423–2431 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Towler, D. A. The osteogenic-angiogenic interface: novel insights into the biology of bone formation and fracture repair. Curr. Osteoporos. Rep. 6, 67–71 (2008).

    PubMed  Google Scholar 

  8. Collins, T. C. et al. Peripheral arterial disease is associated with higher rates of hip bone loss and increased fracture risk in older men. Circulation 119, 2305–2312 (2009).

    PubMed  PubMed Central  Google Scholar 

  9. Guzman, R. J. et al. Tibial artery calcification as a marker of amputation risk in patients with peripheral arterial disease. J. Am. Coll. Cardiol. 51, 1967–1974 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Soor, G. S., Vukin, I., Leong, S. W., Oreopoulos, G. & Butany, J. Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases. Pathology 40, 385–391 (2008).

    PubMed  Google Scholar 

  11. Everhart, J. E., Pettitt, D. J., Knowler, W. C., Rose, F. A. & Bennett, P. H. Medial arterial calcification and its association with mortality and complications of diabetes. Diabetologia 31, 16–23 (1988).

    CAS  PubMed  Google Scholar 

  12. Lehto, S., Niskanen, L., Suhonen, M., Rönnemaa, T. & Laakso, M. Medial artery calcification. A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 16, 978–983 (1996).

    CAS  PubMed  Google Scholar 

  13. Napoli, C. et al. Therapeutic targeting of the stem cell niche in experimental hindlimb ischemia. Nat. Clin. Pract. Cardiovasc. Med. 5, 571–579 (2008).

    CAS  PubMed  Google Scholar 

  14. Gössl, M., Mödder, U. I., Atkinson, E. J., Lerman, A. & Khosla, S. Osteocalcin expression by circulating endothelial progenitor cells in patients with coronary atherosclerosis. J. Am. Coll. Cardiol. 52, 1314–1325 (2008).

    PubMed  PubMed Central  Google Scholar 

  15. Gössl, M. et al. Coronary endothelial dysfunction in humans is associated with coronary retention of osteogenic endothelial progenitor cells. Eur. Heart J. 31, 2909–2914 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Egan, K. P., Kim, J. H., Mohler, E. R. 3rd & Pignolo, R. J. Role for circulating osteogenic precursor cells in aortic valvular disease. Arterioscler. Thromb. Vasc. Biol. 31, 2965–2971 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Eghbali-Fatourechi, G. Z. et al. Circulating osteoblast-lineage cells in humans. N. Engl. J. Med. 352, 1959–1966 (2005).

    CAS  PubMed  Google Scholar 

  18. Shen, X. et al. Prolyl hydroxylase inhibitors increase neoangiogenesis and callus formation following femur fracture in mice. J. Orthop. Res. 27, 1298–1305 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wan, C. et al. Activation of the hypoxia-inducible factor-1α pathway accelerates bone regeneration. Proc. Natl Acad. Sci. USA 105, 686–691 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zelzer, E. & Olsen, B. R. Multiple roles of vascular endothelial growth factor (VEGF) in skeletal development, growth, and repair. Curr. Top. Dev. Biol. 65, 169–187 (2005).

    CAS  Google Scholar 

  21. Demer, L. L. & Tintut, Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation 117, 2938–2948 (2008).

    PubMed  PubMed Central  Google Scholar 

  22. Shao, J. S., Cheng, S. L., Sadhu, J. & Towler, D. A. Inflammation and the osteogenic regulation of vascular calcification: a review and perspective. Hypertension 55, 579–592 (2010).

    CAS  PubMed  Google Scholar 

  23. Cheng, S. L. et al. Activation of vascular smooth muscle parathyroid hormone receptor inhibits Wnt/beta-catenin signaling and aortic fibrosis in diabetic arteriosclerosis. Circ. Res. 107, 271–282 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shao, J. S., Cheng, S. L., Charlton-Kachigian, N., Loewy, A. P. & Towler, D. A. Teriparatide (human parathyroid hormone (1–34)) inhibits osteogenic vascular calcification in diabetic low density lipoprotein receptor-deficient mice. J. Biol. Chem. 278, 50195–50202 (2003).

    CAS  PubMed  Google Scholar 

  25. Shao, J. S. et al. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J. Clin. Invest. 115, 1210–1220 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sebastian, E. M., Suva, L. J. & Friedman, P. A. Differential effects of intermittent PTH(1–34) and PTH(7–34) on bone microarchitecture and aortic calcification in experimental renal failure. Bone 43, 1022–1030 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, M. S. et al. Hyperlipidemia impairs osteoanabolic effects of PTH. J. Bone Miner. Res. 23, 1672–1679 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang, M. S. et al. Atherogenic phospholipids attenuate osteogenic signaling by BMP-2 and parathyroid hormone in osteoblasts. J. Biol. Chem. 282, 21237–21243 (2007).

    CAS  PubMed  Google Scholar 

  29. Sage, A. P. et al. Hyperlipidemia induces resistance to PTH bone anabolism in mice via oxidized lipids. J. Bone Miner. Res. 26, 1197–1206 (2011).

    CAS  PubMed  Google Scholar 

  30. Murphy, W. A. Jr et al. The iceman: discovery and imaging. Radiology 226, 614–629 (2003).

    PubMed  Google Scholar 

  31. Polonsky, T. S. et al. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA 303, 1610–1616 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosenhek, R. et al. Mild and moderate aortic stenosis. Natural history and risk stratification by echocardiography. Eur. Heart J. 25, 199–205 (2004).

    PubMed  Google Scholar 

  33. Rosenhek, R. et al. Predictors of outcome in severe, asymptomatic aortic stenosis. N. Engl. J. Med. 343, 611–617 (2000).

    CAS  PubMed  Google Scholar 

  34. London, G. M. et al. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol. Dial. Transplant. 18, 1731–1740 (2003).

    PubMed  Google Scholar 

  35. Bos, D. et al. Calcification in major vessel beds relates to vascular brain disease. Arterioscler. Thromb. Vasc. Biol. 31, 2331–2337 (2011).

    CAS  PubMed  Google Scholar 

  36. Stary, H. C. Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler. Thromb. Vasc. Biol. 20, 1177–1178 (2000).

    CAS  PubMed  Google Scholar 

  37. Burke, A. P., Kolodgie, F. D., Farb, A., Weber, D. & Virmani, R. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 105, 297–303 (2002).

    PubMed  Google Scholar 

  38. Ward, M. R., Pasterkamp, G., Yeung, A. C. & Borst, C. Arterial remodeling. Mechanisms and clinical implications. Circulation 102, 1186–1191 (2000).

    CAS  PubMed  Google Scholar 

  39. Rajamannan, N. M. Calcific aortic stenosis: lessons learned from experimental and clinical studies. Arterioscler. Thromb. Vasc. Biol. 29, 162–168 (2009).

    CAS  PubMed  Google Scholar 

  40. Rajamannan, N. M., Bonow, R. O. & Rahimtoola, S. H. Calcific aortic stenosis: an update. Nat. Clin. Pract. Cardiovasc. Med. 4, 254–262 (2007).

    CAS  PubMed  Google Scholar 

  41. Greenwald, S. E. Ageing of the conduit arteries. J. Pathol. 211, 157–172 (2007).

    CAS  PubMed  Google Scholar 

  42. Westerhof, N., Lankhaar, J. W. & Westerhof, B. E. The arterial Windkessel. Med. Biol. Eng. Comput. 47, 131–141 (2009).

    PubMed  Google Scholar 

  43. O'Rourke, M. F. Arterial aging: pathophysiological principles. Vasc. Med. 12, 329–341 (2007).

    PubMed  Google Scholar 

  44. Safar, M. E. & Boudier, H. S. Vascular development, pulse pressure, and the mechanisms of hypertension. Hypertension 46, 205–209 (2005).

    CAS  PubMed  Google Scholar 

  45. Virchow, R. & Chance, F. Cellular pathology, as based upon physiological and pathological histology. Twenty lectures delivered in the Pathological Institute of Berlin during the months of February, March and April, 1858 (R. M. De Witt, New York, 1860).

    Google Scholar 

  46. Virchow, R. Cellular pathology. As based upon physiological and pathological histology. Lecture XVI—Atheromatous affection of arteries. 1858. Nutr. Rev. 47, 23–25 (1989).

    CAS  PubMed  Google Scholar 

  47. Mohler, E. R. 3rd et al. Bone formation and inflammation in cardiac valves. Circulation 103, 1522–1528 (2001).

    PubMed  Google Scholar 

  48. Tyson, K. L. et al. Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler. Thromb. Vasc. Biol. 23, 489–494 (2003).

    CAS  PubMed  Google Scholar 

  49. Hessle, L. et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Natl Acad. Sci. USA 99, 9445–9449 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tanimura, A., McGregor, D. H. & Anderson, H. C. Calcification in atherosclerosis. I. Human studies. J. Exp. Pathol. 2, 261–273 (1986).

    CAS  PubMed  Google Scholar 

  51. Tanimura, A., McGregor, D. H. & Anderson, H. C. Calcification in atherosclerosis. II. Animal studies. J. Exp. Pathol. 2, 275–297 (1986).

    CAS  PubMed  Google Scholar 

  52. Boström, K. et al. Bone morphogenetic protein expression in human atherosclerotic lesions. J. Clin. Invest. 91, 1800–1809 (1993).

    PubMed  PubMed Central  Google Scholar 

  53. Zhang, M. et al. Atorvastatin downregulates BMP-2 expression induced by oxidized low-density lipoprotein in human umbilical vein endothelial cells. Circ. J. 72, 807–812 (2008).

    CAS  PubMed  Google Scholar 

  54. Cola, C., Almeida, M., Li, D., Romeo, F. & Mehta, J. L. Regulatory role of endothelium in the expression of genes affecting arterial calcification. Biochem. Biophys. Res. Commun. 320, 424–427 (2004).

    CAS  PubMed  Google Scholar 

  55. Tintut, Y. et al. Monocyte/macrophage regulation of vascular calcification in vitro. Circulation 105, 650–655 (2002).

    CAS  PubMed  Google Scholar 

  56. Yao, Y. et al. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ. Res. 107, 485–494 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Towler, D. A. & Demer, L. L. Thematic series on the pathobiology of vascular calcification: an introduction. Circ. Res. 108, 1378–1380 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Stary, H. C. et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92, 1355–1374 (1995).

    CAS  PubMed  Google Scholar 

  59. Chung, U. I., Kawaguchi, H., Takato, T. & Nakamura, K. Distinct osteogenic mechanisms of bones of distinct origins. J. Orthop. Sci. 9, 410–414 (2004).

    CAS  PubMed  Google Scholar 

  60. Cohen, M. M. Jr. The new bone biology: pathologic, molecular, and clinical correlates. Am. J. Med. Genet. A 140, 2646–2706 (2006).

    PubMed  Google Scholar 

  61. Abzhanov, A., Rodda, S. J., McMahon, A. P. & Tabin, C. J. Regulation of skeletogenic differentiation in cranial dermal bone. Development 134, 3133–3144 (2007).

    CAS  PubMed  Google Scholar 

  62. Karsenty, G. Transcriptional control of skeletogenesis. Annu. Rev. Genomics Hum. Genet. 9, 183–196 (2008).

    CAS  PubMed  Google Scholar 

  63. Aikawa, E. et al. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115, 377–386 (2007).

    CAS  PubMed  Google Scholar 

  64. Steitz, S. A. et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ. Res. 89, 1147–1154 (2001).

    CAS  PubMed  Google Scholar 

  65. Speer, M. Y. et al. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ. Res. 104, 733–741 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Speer, M. Y., Li, X., Hiremath, P. G. & Giachelli, C. M. Runx2/Cbfa1, but not loss of myocardin, is required for smooth muscle cell lineage reprogramming toward osteochondrogenesis. J. Cell. Biochem. 110, 935–947 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Demer, L. & Tintut, Y. The roles of lipid oxidation products and receptor activator of nuclear factor-kappaB signaling in atherosclerotic calcification. Circ. Res. 108, 1482–1493 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Richardson, J. A. et al. Oxysterol-induced osteoblastic differentiation of pluripotent mesenchymal cells is mediated through a PKC- and PKA-dependent pathway. J. Cell. Biochem. 100, 1131–1145 (2007).

    CAS  PubMed  Google Scholar 

  69. Byon, C. H. et al. Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J. Biol. Chem. 283, 15319–15327 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Narisawa, S. et al. Novel inhibitors of alkaline phosphatase suppress vascular smooth muscle cell calcification. J. Bone Miner. Res. 22, 1700–1710 (2007).

    CAS  PubMed  Google Scholar 

  71. Parhami, F. et al. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler. Thromb. Vasc. Biol. 17, 680–687 (1997).

    CAS  PubMed  Google Scholar 

  72. Parhami, F. et al. Atherogenic high-fat diet reduces bone mineralization in mice. J. Bone Miner. Res. 16, 182–188 (2001).

    CAS  PubMed  Google Scholar 

  73. Sage, A. P., Lu, J., Tintut, Y. & Demer, L. L. Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 79, 414–422 (2011).

    CAS  PubMed  Google Scholar 

  74. Sage, A. P., Tintut, Y. & Demer, L. L. Regulatory mechanisms in vascular calcification. Nat. Rev. Cardiol. 7, 528–536 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tintut, Y. et al. Multilineage potential of cells from the artery wall. Circulation 108, 2505–2510 (2003).

    PubMed  Google Scholar 

  76. Collett, G. D. & Canfield, A. E. Angiogenesis and pericytes in the initiation of ectopic calcification. Circ. Res. 96, 930–938 (2005).

    CAS  PubMed  Google Scholar 

  77. Nelson, R. G. et al. Lower-extremity amputations in NIDDM. 12-yr follow-up study in Pima Indians. Diabetes Care 11, 8–16 (1988).

    CAS  PubMed  Google Scholar 

  78. Leskinen, Y., Salenius, J. P., Lehtimäki, T., Huhtala, H. & Saha, H. The prevalence of peripheral arterial disease and medial arterial calcification in patients with chronic renal failure: requirements for diagnostics. Am. J. Kidney Dis. 40, 472–479 (2002).

    PubMed  Google Scholar 

  79. Towler, D. A. Vascular calcification: A perspective on an imminent disease epidemic. IBMS BoneKEy 5, 41–58 (2008).

    Google Scholar 

  80. Robbins, S. L., Cotran, R. S. & Kumar, V. Pathologic Basis of Disease (Saunders, Philadelphia, 1984).

    Google Scholar 

  81. O'Rourke, M. F. & Hashimoto, J. Mechanical factors in arterial aging: a clinical perspective. J. Am. Coll. Cardiol. 50, 1–13 (2007).

    PubMed  Google Scholar 

  82. Al-Aly, Z. et al. Aortic Msx2-Wnt calcification cascade is regulated by TNF-α -dependent signals in diabetic Ldlr−/− mice. Arterioscler. Thromb. Vasc. Biol. 27, 2589–2596 (2007).

    CAS  PubMed  Google Scholar 

  83. Qiao, J. H., Mertens, R. B., Fishbein, M. C. & Geller, S. A. Cartilaginous metaplasia in calcified diabetic peripheral vascular disease: morphologic evidence of enchondral ossification. Hum. Pathol. 34, 402–407 (2003).

    CAS  PubMed  Google Scholar 

  84. Satokata, I. et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat. Genet. 24, 391–395 (2000).

    CAS  PubMed  Google Scholar 

  85. Towler, D. A., Bidder, M., Latifi, T., Coleman, T. & Semenkovich, C. F. Diet-induced diabetes activates an osteogenic gene regulatory program in the aortas of low density lipoprotein receptor-deficient mice. J. Biol. Chem. 273, 30427–30434 (1998).

    CAS  PubMed  Google Scholar 

  86. Canfield, A. E. et al. Role of pericytes in vascular calcification: a review. Z. Kardiol. 89 (Suppl. 2), 20–27 (2000).

    PubMed  Google Scholar 

  87. Zhang, L. et al. Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation 108, 472–478 (2003).

    CAS  PubMed  Google Scholar 

  88. Csiszar, A. et al. Regulation of bone morphogenetic protein-2 expression in endothelial cells: role of nuclear factor-kappaB activation by tumor necrosis factor-α, H2O2, and high intravascular pressure. Circulation 111, 2364–2372 (2005).

    CAS  PubMed  Google Scholar 

  89. Rawadi, G., Vayssière, B., Dunn, F., Baron, R. & Roman-Roman, S. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J. Bone Miner. Res. 18, 1842–1853 (2003).

    CAS  PubMed  Google Scholar 

  90. Cheng, S. L., Shao, J. S., Charlton-Kachigian, N., Loewy, A. P. & Towler, D. A. MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J. Biol. Chem. 278, 45969–45977 (2003).

    CAS  PubMed  Google Scholar 

  91. Shao, J. S., Cai, J. & Towler, D. A. Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arterioscler. Thromb. Vasc. Biol. 26, 1423–1430 (2006).

    CAS  PubMed  Google Scholar 

  92. Cheng, S. L., Shao, J. S., Cai, J., Sierra, O. L. & Towler, D. A. Msx2 exerts bone anabolism via canonical Wnt signaling. J. Biol. Chem. 283, 20505–20522 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Boström, K. I., Rajamannan, N. M. & Towler, D. A. The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circ. Res. 109, 564–577 (2011).

    PubMed  PubMed Central  Google Scholar 

  94. Orrico, C. et al. Dysfunctional vasa vasorum in diabetic peripheral artery obstructive disease with critical lower limb ischaemia. Eur. J. Vasc. Endovasc. Surg. 40, 365–374 (2010).

    CAS  PubMed  Google Scholar 

  95. Hayden, M. R. & Tyagi, S. C. Vasa vasorum in plaque angiogenesis, metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: a malignant transformation. Cardiovasc. Diabetol. 3, 1 (2004).

    PubMed  PubMed Central  Google Scholar 

  96. Buján, J. et al. Modifications induced by atherogenic diet in the capacity of the arterial wall in rats to respond to surgical insult. Atherosclerosis 122, 141–152 (1996).

    PubMed  Google Scholar 

  97. Miller, J. D. et al. Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J. Am. Coll. Cardiol. 52, 843–850 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Caira, F. C. et al. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J. Am. Coll. Cardiol. 47, 1707–1712 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Rajamannan, N. M. The role of Lrp5/6 in cardiac valve disease: experimental hypercholesterolemia in the ApoE−/−/Lrp5−/− mice. J. Cell. Biochem. 112, 2987–2991 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hellberg, C., Ostman, A. & Heldin, C. H. PDGF and vessel maturation. Recent Results Cancer Res. 180, 103–114 (2010).

    CAS  PubMed  Google Scholar 

  101. Fadini, G. P. et al. Widespread increase in myeloid calcifying cells contributes to ectopic vascular calcification in type 2 diabetes. Circ. Res. 108, 1112–1121 (2011).

    CAS  PubMed  Google Scholar 

  102. Pignolo, R. J. & Shore, E. M. Circulating osteogenic precursor cells. Crit. Rev. Eukaryot. Gene Expr. 20, 171–180 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hruska, K. A., Choi, E. T., Memon, I., Davis, T. K. & Mathew, S. Cardiovascular risk in chronic kidney disease (CKD): the CKD-mineral bone disorder (CKD–MBD). Pediatr. Nephrol. 25, 769–778 (2010).

    PubMed  Google Scholar 

  104. Moe, S. M., Drüeke, T., Lameire, N. & Eknoyan, G. Chronic kidney disease-mineral-bone disorder: a new paradigm. Adv. Chronic Kidney Dis. 14, 3–12 (2007).

    PubMed  Google Scholar 

  105. Foley, R. N. & Collins, A. J. End-stage renal disease in the United States: an update from the United States Renal Data System. J. Am. Soc. Nephrol. 18, 2644–2648 (2007).

    PubMed  Google Scholar 

  106. London, G. M. Cardiovascular calcifications in uremic patients: clinical impact on cardiovascular function. J. Am. Soc. Nephrol. 14 (Suppl. 4), S305–S309 (2003).

    PubMed  Google Scholar 

  107. Ishimura, E. et al. Different risk factors for vascular calcification in end-stage renal disease between diabetics and nondiabetics: the respective importance of glycemic and phosphate control. Kidney Blood Press. Res. 31, 10–15 (2008).

    CAS  PubMed  Google Scholar 

  108. Mizobuchi, M., Towler, D. & Slatopolsky, E. Vascular calcification: the killer of patients with chronic kidney disease. J. Am. Soc. Nephrol. 20, 1453–1464 (2009).

    CAS  PubMed  Google Scholar 

  109. Moe, S. M. et al. The pathophysiology of early stage chronic kidney disease-mineral bone disorder (CKD–MBD) and response to phosphate binders in the rat. J. Bone Miner. Res. 26, 2672–2681 (2011).

    CAS  PubMed  Google Scholar 

  110. Foley, R. N., Collins, A. J., Herzog, C. A., Ishani, A. & Kalra, P. A. Serum phosphate and left ventricular hypertrophy in young adults: the coronary artery risk development in young adults study. Kidney Blood Press. Res. 32, 37–44 (2009).

    CAS  PubMed  Google Scholar 

  111. Foley, R. N., Collins, A. J., Herzog, C. A., Ishani, A. & Kalra, P. A. Serum phosphorus levels associate with coronary atherosclerosis in young adults. J. Am. Soc. Nephrol. 20, 397–404 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Reynolds, J. L. et al. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J. Am. Soc. Nephrol. 15, 2857–2867 (2004).

    CAS  PubMed  Google Scholar 

  113. Reynolds, J. L. et al. Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification. J. Am. Soc. Nephrol. 16, 2920–2930 (2005).

    CAS  PubMed  Google Scholar 

  114. Jahnen-Dechent, W., Heiss, A., Schäfer, C. & Ketteler, M. Fetuin-A regulation of calcified matrix metabolism. Circ. Res. 108, 1494–1509 (2011).

    CAS  PubMed  Google Scholar 

  115. Ciaccio, M. et al. Changes in serum fetuin-A and inflammatory markers levels in end-stage renal disease (ESRD): effect of a single session haemodialysis. Clin. Chem. Lab. Med. 46, 212–214 (2008).

    CAS  PubMed  Google Scholar 

  116. Villa-Bellosta, R., Levi, M. & Sorribas, V. Vascular smooth muscle cell calcification and SLC20 inorganic phosphate transporters: effects of PDGF, TNF-α, and Pi. Pflugers Arch. 458, 1151–1161 (2009).

    CAS  PubMed  Google Scholar 

  117. Li, X., Yang, H. Y. & Giachelli, C. M. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis 199, 271–277 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Shroff, R. C. et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation 118, 1748–1757 (2008).

    CAS  PubMed  Google Scholar 

  119. Nadra, I. et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ. Res. 96, 1248–1256 (2005).

    CAS  PubMed  Google Scholar 

  120. Boström, K. Proinflammatory vascular calcification. Circ. Res. 96, 1219–1220 (2005).

    PubMed  Google Scholar 

  121. Koleganova, N. et al. Arterial calcification in patients with chronic kidney disease. Nephrol. Dial. Transplant. 24, 2488–2496 (2009).

    CAS  PubMed  Google Scholar 

  122. Fellström, B. C. et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 360, 1395–1407 (2009).

    PubMed  Google Scholar 

  123. Baigent, C. et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377, 2181–2192 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Block, G. A., Raggi, P., Bellasi, A., Kooienga, L. & Spiegel, D. M. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int. 71, 438–441 (2007).

    CAS  PubMed  Google Scholar 

  125. Moe, S. M. & Chertow, G. M. The case against calcium-based phosphate binders. Clin. J. Am. Soc. Nephrol. 1, 697–703 (2006).

    CAS  PubMed  Google Scholar 

  126. Raggi, P., Vukicevic, S., Moysés, R. M., Wesseling, K. & Spiegel, D. M. Ten-year experience with sevelamer and calcium salts as phosphate binders. Clin. J. Am. Soc. Nephrol. 5 (Suppl. 1), S31–S40 (2010).

    CAS  PubMed  Google Scholar 

  127. Raggi, P. et al. Decrease in thoracic vertebral bone attenuation with calcium-based phosphate binders in hemodialysis. J. Bone Miner. Res. 20, 764–772 (2005).

    CAS  PubMed  Google Scholar 

  128. London, G. M. et al. Arterial calcifications and bone histomorphometry in end-stage renal disease. J. Am. Soc. Nephrol. 15, 1943–1951 (2004).

    PubMed  Google Scholar 

  129. Demer, L. & Tintut, Y. The bone–vascular axis in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 19, 349–353 (2010).

    PubMed  PubMed Central  Google Scholar 

  130. Findlay, D. M. & Martin, T. J. Receptors of calciotropic hormones. Horm. Metab. Res. 29, 128–134 (1997).

    CAS  PubMed  Google Scholar 

  131. Chambliss, K. L. et al. Estrogen receptor α and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ. Res. 87, E44–E52 (2000).

    CAS  PubMed  Google Scholar 

  132. Ferreira, J. A., Pompei, L. M., Fernandes, C. E., Azevedo, L. H. & Peixoto, S. Breast arterial calcification is a predictive factor of cardiovascular disease in Brazilian postmenopausal women. Climacteric 12, 439–444 (2009).

    CAS  PubMed  Google Scholar 

  133. Barrett-Connor, E. & Laughlin, G. A. Hormone therapy and coronary artery calcification in asymptomatic postmenopausal women: the Rancho Bernardo Study. Menopause 12, 40–48 (2005).

    PubMed  Google Scholar 

  134. Rossouw, J. E. et al. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA 297, 1465–1477 (2007).

    CAS  PubMed  Google Scholar 

  135. Van Den Bosch, M. A. et al. The RATIO study: oral contraceptives and the risk of peripheral arterial disease in young women. J. Thromb. Haemost. 1, 439–444 (2003).

    CAS  PubMed  Google Scholar 

  136. Bukoski, R. D. & Kremer, D. Calcium-regulating hormones in hypertension: vascular actions. Am. J. Clin. Nutr. 54 (Suppl.), 220S–226S (1991).

    CAS  PubMed  Google Scholar 

  137. Holick, M. F. Sunlight and vitamin D: both good for cardiovascular health. J. Gen. Intern. Med. 17, 733–735 (2002).

    PubMed  PubMed Central  Google Scholar 

  138. Brewer, L. C., Michos, E. D. & Reis, J. P. Vitamin D in atherosclerosis, vascular disease, and endothelial function. Curr. Drug Targets 12, 54–60 (2011).

    CAS  PubMed  Google Scholar 

  139. Oh, J. et al. 1,25(OH)2 vitamin D inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus. Circulation 120, 687–698 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Neuhouser, M. L. et al. Multivitamin use and risk of cancer and cardiovascular disease in the Women's Health Initiative cohorts. Arch. Intern. Med. 169, 294–304 (2009).

    PubMed  Google Scholar 

  141. Querfeld, U. & Mak, R. H. Vitamin D deficiency and toxicity in chronic kidney disease: in search of the therapeutic window. Pediatr. Nephrol. 25, 2413–2430 (2010).

    PubMed  Google Scholar 

  142. Price, P. A., Williamson, M. K., Nguyen, T. M. & Than, T. N. Serum levels of the fetuin-mineral complex correlate with artery calcification in the rat. J. Biol. Chem. 279, 1594–1600 (2004).

    CAS  PubMed  Google Scholar 

  143. Idelevich, A., Rais, Y. & Monsonego-Ornan, E. Bone Gla protein increases HIF-1α-dependent glucose metabolism and induces cartilage and vascular calcification. Arterioscler. Thromb. Vasc. Biol. 31, e55–e71 (2011).

    CAS  PubMed  Google Scholar 

  144. Alam, M. U. et al. Calcification is associated with loss of functional calcium-sensing receptor in vascular smooth muscle cells. Cardiovasc. Res. 81, 260–268 (2009).

    CAS  PubMed  Google Scholar 

  145. Henley, C. et al. 1,25-Dihydroxyvitamin = D3 but not cinacalcet HCl (Sensipar/Mimpara) treatment mediates aortic calcification in a rat model of secondary hyperparathyroidism. Nephrol. Dial. Transplant. 20, 1370–1377 (2005).

    CAS  PubMed  Google Scholar 

  146. Jono, S., Nishizawa, Y., Shioi, A. & Morii, H. Parathyroid hormone-related peptide as a local regulator of vascular calcification. Its inhibitory action on in vitro calcification by bovine vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 17, 1135–1142 (1997).

    CAS  PubMed  Google Scholar 

  147. Fiaschi-Taesch, N. et al. Mutant parathyroid hormone-related protein, devoid of the nuclear localization signal, markedly inhibits arterial smooth muscle cell cycle and neointima formation by coordinate up-regulation of p15Ink4b and p27kip1. Endocrinology 150, 1429–1439 (2009).

    CAS  PubMed  Google Scholar 

  148. Fiaschi-Taesch, N., Takane, K. K., Masters, S., Lopez-Talavera, J. C. & Stewart, A. F. Parathyroid-hormone-related protein as a regulator of pRb and the cell cycle in arterial smooth muscle. Circulation 110, 177–185 (2004).

    CAS  PubMed  Google Scholar 

  149. Qian, J. et al. Midgestational lethality in mice lacking the parathyroid hormone (PTH)/PTH-related peptide receptor is associated with abrupt cardiomyocyte death. Endocrinology 144, 1053–1061 (2003).

    CAS  PubMed  Google Scholar 

  150. Nyby, M. D. et al. Desensitization of vascular tissue to parathyroid hormone and parathyroid hormone-related protein. Endocrinology 136, 2497–2504 (1995).

    CAS  PubMed  Google Scholar 

  151. Schipani, E., Kruse, K. & Jüppner, H. A constitutively active mutant PTH–PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 268, 98–100 (1995).

    CAS  PubMed  Google Scholar 

  152. Langub, M. C. et al. Administration of PTH-(7–84) antagonizes the effects of PTH-(1–84) on bone in rats with moderate renal failure. Endocrinology 144, 1135–1138 (2003).

    CAS  PubMed  Google Scholar 

  153. Walker, M. D. et al. Carotid vascular abnormalities in primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 94, 3849–3856 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Maeda, S. et al. Targeted overexpression of parathyroid hormone-related protein (PTHrP) to vascular smooth muscle in transgenic mice lowers blood pressure and alters vascular contractility. Endocrinology 140, 1815–1825 (1999).

    CAS  PubMed  Google Scholar 

  155. Song, G. J. et al. EBP50 inhibits the anti-mitogenic action of the parathyroid hormone type 1 receptor in vascular smooth muscle cells. J. Mol. Cell. Cardiol. 49, 1012–1021 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Suttamanatwong, S., Franceschi, R. T., Carlson, A. E. & Gopalakrishnan, R. Regulation of matrix Gla protein by parathyroid hormone in MC3T3-E1 osteoblast-like cells involves protein kinase A and extracellular signal-regulated kinase pathways. J. Cell. Biochem. 102, 496–505 (2007).

    CAS  PubMed  Google Scholar 

  157. Gopalakrishnan, R., Suttamanatwong, S., Carlson, A. E. & Franceschi, R. T. Role of matrix Gla protein in parathyroid hormone inhibition of osteoblast mineralization. Cells Tissues Organs 181, 166–175 (2005).

    CAS  PubMed  Google Scholar 

  158. Brenneise, C. V. & Squier, C. A. Blood flow in maxilla and mandible of normal and atherosclerotic rhesus monkeys. J. Oral Pathol. 14, 800–808 (1985).

    CAS  PubMed  Google Scholar 

  159. Shao, J. S. et al. Vascular calcification and aortic fibrosis: a bifunctional role for osteopontin in diabetic arteriosclerosis. Arterioscler. Thromb. Vasc. Biol. 31, 1821–1833 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. McCarthy, I. The physiology of bone blood flow: a review. J. Bone Joint Surg. Am. 88 (Suppl. 3), 4–9 (2006).

    PubMed  Google Scholar 

  161. Bridgeman, G. & Brookes, M. Blood supply to the human femoral diaphysis in youth and senescence. J. Anat. 188, 611–621 (1996).

    PubMed  PubMed Central  Google Scholar 

  162. Brinker, M. R., Lippton, H. L., Cook, S. D. & Hyman, A. L. Pharmacological regulation of the circulation of bone. J. Bone Joint Surg. Am. 72, 964–975 (1990).

    CAS  PubMed  Google Scholar 

  163. Prisby, R. D. et al. Aging reduces skeletal blood flow, endothelium-dependent vasodilation, and NO bioavailability in rats. J. Bone Miner. Res. 22, 1280–1288 (2007).

    CAS  PubMed  Google Scholar 

  164. Prisby, R. et al. Intermittent PTH(1–84) is osteoanabolic but not osteoangiogenic and relocates bone marrow blood vessels closer to bone forming sites. J. Bone Miner. Res. 26, 2583–2596 (2011).

    CAS  PubMed  Google Scholar 

  165. Bouletreau, P. J. et al. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast. Reconstr. Surg. 109, 2384–2397 (2002).

    PubMed  Google Scholar 

  166. Zhao, C. et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 4, 111–121 (2006).

    CAS  PubMed  Google Scholar 

  167. Bochenek, M. L., Dickinson, S., Astin, J. W., Adams, R. H. & Nobes, C. D. Ephrin-B2 regulates endothelial cell morphology and motility independently of Eph-receptor binding. J. Cell Sci. 123, 1235–1246 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kanazawa, I. et al. Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biol. 8, 51 (2007).

    PubMed  PubMed Central  Google Scholar 

  169. Armour, K. E. et al. Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase. Endocrinology 142, 760–766 (2001).

    CAS  PubMed  Google Scholar 

  170. Collin-Osdoby, P. et al. Receptor activator of NF-kappa B and osteoprotegerin expression by human microvascular endothelial cells, regulation by inflammatory cytokines, and role in human osteoclastogenesis. J. Biol. Chem. 276, 20659–20672 (2001).

    CAS  PubMed  Google Scholar 

  171. Dominguez, J. M. 2nd, Prisby, R. D., Muller-Delp, J. M., Allen, M. R. & Delp, M. D. Increased nitric oxide-mediated vasodilation of bone resistance arteries is associated with increased trabecular bone volume after endurance training in rats. Bone 46, 813–819 (2010).

    CAS  PubMed  Google Scholar 

  172. Bianco, P., Sacchetti, B. & Riminucci, M. Osteoprogenitors and the hematopoietic microenvironment. Best Pract. Res. Clin. Haematol. 24, 37–47 (2011).

    CAS  PubMed  Google Scholar 

  173. Brunner, S. et al. Parathyroid hormone effectively induces mobilization of progenitor cells without depletion of bone marrow. Exp. Hematol. 36, 1157–1166 (2008).

    CAS  PubMed  Google Scholar 

  174. Fukumoto, S. & Martin, T. J. Bone as an endocrine organ. Trends Endocrinol. Metab. 20, 230–236 (2009).

    CAS  PubMed  Google Scholar 

  175. Gutierrez, O. et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J. Am. Soc. Nephrol. 16, 2205–2215 (2005).

    CAS  PubMed  Google Scholar 

  176. Bergwitz, C. & Jüppner, H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu. Rev. Med. 61, 91–104 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Sitara, D. et al. Genetic ablation of vitamin D activation pathway reverses biochemical and skeletal anomalies in Fgf-23-null animals. Am. J. Pathol. 169, 2161–2170 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Fukumoto, S. & Yamashita, T. FGF23 is a hormone-regulating phosphate metabolism–unique biological characteristics of FGF23. Bone 40, 1190–1195 (2007).

    CAS  PubMed  Google Scholar 

  179. Stubbs, J. R. et al. Role of hyperphosphatemia and 1,25-dihydroxyvitamin D in vascular calcification and mortality in fibroblastic growth factor 23 null mice. J. Am. Soc. Nephrol. 18, 2116–2124 (2007).

    CAS  PubMed  Google Scholar 

  180. Isakova, T. et al. Postprandial mineral metabolism and secondary hyperparathyroidism in early CKD. J. Am. Soc. Nephrol. 19, 615–623 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Shimizu, H. et al. Indoxyl sulfate downregulates renal expression of Klotho through production of ROS and activation of nuclear factor-kB. Am. J. Nephrol. 33, 319–324 (2011).

    CAS  PubMed  Google Scholar 

  182. Farrow, E. G. & White, K. E. Recent advances in renal phosphate handling. Nat. Rev. Nephrol. 6, 207–217 (2010).

    PubMed  PubMed Central  Google Scholar 

  183. Canalejo, R. et al. FGF23 fails to inhibit uremic parathyroid glands. J. Am. Soc. Nephrol. 21, 1125–1135 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Adijiang, A. & Niwa, T. An oral sorbent, AST-120, increases Klotho expression and inhibits cell senescence in the kidney of uremic rats. Am. J. Nephrol. 31, 160–164 (2010).

    CAS  PubMed  Google Scholar 

  185. Hu, M. C. et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 22, 124–136 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Saito, Y. et al. Klotho protein protects against endothelial dysfunction. Biochem. Biophys. Res. Commun. 248, 324–329 (1998).

    CAS  PubMed  Google Scholar 

  187. Wacker, M. et al. Dentin matrix protein 1 null mice, a model of human autosomal recessive hyphosphatemic rickets, exhibit decreases in cardiac, skeletal, and vascular smooth muscle function [abstract]. J. Bone Miner. Res. 25 (Suppl. 1), a1157 (2010).

    Google Scholar 

  188. Jono, S., Peinado, C. & Giachelli, C. M. Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J. Biol. Chem. 275, 20197–20203 (2000).

    CAS  PubMed  Google Scholar 

  189. Christensen, B. et al. Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties. J. Biol. Chem. 282, 19463–19472 (2007).

    CAS  PubMed  Google Scholar 

  190. Scatena, M., Liaw, L. & Giachelli, C. M. Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler. Thromb. Vasc. Biol. 27, 2302–2309 (2007).

    CAS  PubMed  Google Scholar 

  191. Lee, N. K. et al. Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456–469 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Whitehead, J. P., Richards, A. A., Hickman, I. J., Macdonald, G. A. & Prins, J. B. Adiponectin—a key adipokine in the metabolic syndrome. Diabetes Obes. Metab. 8, 264–280 (2006).

    CAS  PubMed  Google Scholar 

  193. Son, B. K. et al. Adiponectin antagonizes stimulatory effect of tumor necrosis factor-α on vascular smooth muscle cell calcification: regulation of growth arrest-specific gene 6-mediated survival pathway by adenosine 5'-monophosphate-activated protein kinase. Endocrinology 149, 1646–1653 (2008).

    CAS  PubMed  Google Scholar 

  194. Luo, X. H. et al. Development of arterial calcification in adiponectin-deficient mice: adiponectin regulates arterial calcification. J. Bone Miner. Res. 24, 1461–1468 (2009).

    CAS  PubMed  Google Scholar 

  195. Lomonte, C. et al. Serum parathyroid hormone and phosphate influence the levels of circulating CD34+ cells in uremia. J. Nephrol. 23, 693–698 (2010).

    PubMed  Google Scholar 

  196. Faul, C. et al. FGF23 induces left ventricular hypertrophy.. J. Clin. Invest. 121, 4393–4408 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Yu, N. et al. Increased mortality and morbidity in mild primary hyperparathyroid patients. The Parathyroid Epidemiology and Audit Research Study (PEARS). Clin. Endocrinol. (Oxf.) 73, 30–34 (2010).

    Google Scholar 

  198. Rhee, Y. et al. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 49, 636–643 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Sage, A. P. et al. Hyperlipidemia induces resistance to PTH bone anabolism in mice via oxidized lipids. J. Bone Miner. Res. 26, 1197–1206 (2011).

    CAS  PubMed  Google Scholar 

  200. López, I. et al. Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo. Kidney Int. 80, 475–482 (2011).

    PubMed  Google Scholar 

  201. Kosch, M. et al. Impaired flow-mediated vasodilation of the brachial artery in patients with primary hyperparathyroidism improves after parathyroidectomy. Cardiovasc. Res. 47, 813–818 (2000).

    CAS  PubMed  Google Scholar 

  202. Teng, M. et al. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N. Engl. J. Med. 349, 446–456 (2003).

    CAS  PubMed  Google Scholar 

  203. Golestani, R. et al. Abdominal aortic calcification detected by dual X-ray absorptiometry: a strong predictor for cardiovascular events. Ann. Med. 42, 539–545 (2010).

    PubMed  Google Scholar 

  204. Sennerby, U. et al. Cardiovascular diseases and risk of hip fracture. JAMA 302, 1666–1673 (2009).

    CAS  PubMed  Google Scholar 

  205. von Mühlen, D., Allison, M., Jassal, S. K. & Barrett-Connor, E. Peripheral arterial disease and osteoporosis in older adults: the Rancho Bernardo Study. Osteoporos. Int. 20, 2071–2078 (2009).

    PubMed  PubMed Central  Google Scholar 

  206. Bagger, Y. Z. et al. Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se? Osteoporos. Int. 18, 505–512 (2007).

    CAS  PubMed  Google Scholar 

  207. Elmariah, S. et al. Bisphosphonate use and prevalence of valvular and vascular calcification in women MESA (The Multi-Ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 56, 1752–1759 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Bolland, M. J. et al. Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. BMJ 336, 262–266 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Bolland, M. J., Grey, A., Avenell, A., Gamble, G. D. & Reid, I. R. Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women's Health Initiative limited access dataset and meta-analysis. BMJ 342, d2040 (2011).

    PubMed  PubMed Central  Google Scholar 

  210. Yoshimura, T. et al. Impaired peripheral circulation in lower-leg arteries caused by higher arterial stiffness and greater vascular resistance associates with nephropathy in type 2 diabetic patients with normal ankle–brachial indices. Diabetes Res. Clin. Pract. 80, 416–423 (2008).

    PubMed  Google Scholar 

  211. Johnson, K. A., Polewski, M. & Terkeltaub, R. A. Transglutaminase 2 is central to induction of the arterial calcification program by smooth muscle cells. Circ. Res. 102, 529–537 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Faverman, L., Mikhaylova, L., Malmquist, J. & Nurminskaya, M. Extracellular transglutaminase 2 activates beta-catenin signaling in calcifying vascular smooth muscle cells. FEBS Lett. 582, 1552–1557 (2008).

    CAS  PubMed  Google Scholar 

  213. Towler, D. A. Calciotropic hormones and arterial physiology: “D”-lightful insights. J. Am. Soc. Nephrol. 18, 369–373 (2007).

    CAS  PubMed  Google Scholar 

  214. Shroff, R. et al. A bimodal association of vitamin D levels and vascular disease in children on dialysis. J. Am. Soc. Nephrol. 19, 1239–1246 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Behnke, B. J. et al. Influence of ageing and physical activity on vascular morphology in rat skeletal muscle. J. Physiol. 575, 617–626 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Kronenberg, H. M. PTH regulates the hematopoietic stem cell niche in bone. Adv. Exp. Med. Biol. 602, 57–60 (2007).

    PubMed  Google Scholar 

  217. Jilka, R. L. et al. Decreased oxidative stress and greater bone anabolism in the aged, when compared to the young, murine skeleton with parathyroid hormone administration. Aging Cell 9, 851–867 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D. A. Towler was supported by NIH grants HL88651, HL69299, and HL81138, and the Barnes-Jewish Hospital Foundation.

Author information

Authors and Affiliations

Authors

Contributions

D. A. Towler researched the data for the article and wrote the article. Both authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Dwight A. Towler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, B., Towler, D. Arterial calcification and bone physiology: role of the bone–vascular axis. Nat Rev Endocrinol 8, 529–543 (2012). https://doi.org/10.1038/nrendo.2012.36

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing