Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bone metastasis: mechanisms and therapeutic opportunities

Abstract

The skeleton is one of the most common sites for metastatic cancer, and tumors arising from the breast or prostate possess an increased propensity to spread to this site. The growth of disseminated tumor cells in the skeleton requires tumor cells to inhabit the bone marrow, from which they stimulate local bone cell activity. Crosstalk between tumor cells and resident bone and bone marrow cells disrupts normal bone homeostasis, which leads to tumor growth in bone. The metastatic tumor cells have the ability to elicit responses that stimulate bone resorption, bone formation or both. The net result of these activities is profound skeletal destruction that can have dire consequences for patients. The molecular mechanisms that underlie these painful and often incurable consequences of tumor metastasis to bone are beginning to be recognized, and they represent promising new molecular targets for therapy.

Key Points

  • Bone is a common site of metastasis for many tumors, such as breast, lung and prostate cancer

  • A continuum of bone metastasis exists that extends from primarily osteolytic lesions with limited osteoblast activity to bone metastases that are predominantly osteoblastic, with limited osteoclast activity

  • The complex interactions between circulating tumor cells, circulating host cells, platelets and cell-derived factors are critical for tumor establishment at metastatic sites

  • Tumor activation of bone resorption is complex and involves both receptor activator of nuclear factor κB ligand (RANKL)-dependent and RANKL-independent mechanisms

  • Targeting bone resorption with bisphosphonates reduces osteolytic bone resorption and improves disease-free survival

  • All steps in the metastatic process and the interaction with host cells are valid therapeutic targets for the treatment of bone metastasis and tumor progression

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steps involved in tumor cell metastasis from a primary site to the skeleton.
Figure 2: Biochemical markers of bone turnover are released during bone remodeling.
Figure 3: The stimulation of bone cell activity by tumors in the bone marrow.

Similar content being viewed by others

Robert E. Coleman, Peter I. Croucher, … Luis Costa

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 133, 571–573 (1889).

    Article  Google Scholar 

  3. DeNardo, D. G., Johansson, M. & Coussens, L. M. Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev. 27, 11–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Amano, H. et al. Roles of a prostaglandin E-type receptor, EP3, in upregulation of matrix metalloproteinase-9 and vascular endothelial growth factor during enhancement of tumor metastasis. Cancer Sci. 100, 2318–2324 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Visser, K. E., Korets, L. V. & Coussens, L. M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7, 411–423 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Fidler, I. J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Poste, G. & Fidler, I. J. The pathogenesis of cancer metastasis. Nature 283, 139–146 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Mundy, G. R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2, 584–593 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Roodman, G. D. Mechanisms of bone metastasis. N. Engl. J. Med. 350, 1655–1664 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Suva, L. J., Griffin, R. J. & Makhoul, I. Mechanisms of bone metastases of breast cancer. Endocr. Relat. Cancer 16, 703–713 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coleman, R. E. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res. 12, 6243S–6249S (2006).

    Article  PubMed  Google Scholar 

  13. León, X., Quer, M., Orús, C., del Prado Venegas, M. & López, M. Distant metastases in head and neck cancer patients who achieved loco-regional control. Head Neck 22, 680–686 (2000).

    Article  PubMed  Google Scholar 

  14. Patten, R. M., Shuman, W. P. & Teefey, S. Metastases from malignant melanoma to the axial skeleton: a CT study of frequency and appearance. AJR Am. J. Roentgenol. 155, 109–112 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Bendre, M., Gaddy, D., Nicholas, R. W. & Suva, L. J. Breast cancer metastasis to bone: it is not all about PTHrP. Clin. Orthop. Relat. Res. 415 (Suppl.), S39–S45 (2003).

    Article  Google Scholar 

  16. Casimiro, S., Guise, T. A. & Chirgwin, J. The critical role of the bone microenvironment in cancer metastases. Mol. Cell Endocrinol. 310, 71–81 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Guise, T. A. et al. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin. Cancer Res. 12, 6213S–6216S (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Coleman, R. E. Skeletal complications of malignancy. Cancer 80 (Suppl.), 1588–1594 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Coleman, R. et al. Bone markers and their prognostic value in metastatic bone disease: clinical evidence and future directions. Cancer Treat. Rev. 34, 629–639 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Demers, L. M. et al. Biochemical markers of bone turnover in patients with metastatic bone disease. Clin. Chem. 41, 1489–1494 (1995).

    CAS  PubMed  Google Scholar 

  21. Martin, T. J. Manipulating the environment of cancer cells in bone: a novel therapeutic approach. J. Clin. Invest. 110, 1399–1401 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boyde, A., Maconnachie, E., Reid, S. A., Delling, G. & Mundy, G. R. Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scan. Electron. Microsc. 4, 1537–1554 (1986).

    Google Scholar 

  23. Mundy, G. R. & Martin, T. J. Physiology and Pharmacology of Bone 641–671 (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  24. Stewart, A. F. et al. Quantitative bone histomorphometry in humoral hypercalcemia of malignancy: uncoupling of bone cell activity. J. Clin. Endocrinol. Metab. 55, 219–227 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. Charhon, S. A. et al. Histomorphometric analysis of sclerotic bone metastases from prostatic carcinoma special reference to osteomalacia. Cancer 51, 918–924 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. Roudier, M. P. et al. Histopathological assessment of prostate cancer bone osteoblastic metastases. J. Urol. 180, 1154–1160 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Coleman, R. E. Conclusion: Bone markers in metastatic bone disease. Cancer Treat. Rev. 32 (Suppl. 1), 27–28 (2006).

    Article  PubMed  Google Scholar 

  28. Fili, S., Karalaki, M. & Schaller, B. Mechanism of bone metastasis: the role of osteoprotegerin and of the host-tissue microenvironment-related survival factors. Cancer Lett. 283, 10–19 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Percival, R. C. et al. Biochemical and histological evidence that carcinoma of the prostate is associated with increased bone resorption. Eur. J. Surg. Oncol. 13, 41–49 (1987).

    CAS  PubMed  Google Scholar 

  30. Pelger, R. C., Hamdy, N. A., Zwinderman, A. H., Lycklama à Nijeholt, A. A. & Papapoulos, S. E. Effects of the bisphosphonate olpadronate in patients with carcinoma of the prostate metastatic to the skeleton. Bone 22, 403–408 (1998).

    Article  PubMed  Google Scholar 

  31. Garnero, P. et al. Markers of bone turnover for the management of patients with bone metastases from prostate cancer. Br. J. Cancer 82, 858–864 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yi, B., Williams, P. J., Niewolna, M., Wang, Y. & Yoneda, T. Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Res. 62, 917–923 (2002).

    CAS  PubMed  Google Scholar 

  33. Yin, J. J. et al. A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc. Natl Acad. Sci. USA 100, 10954–10959 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thalmann, G. N. et al. LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate 44, 91–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. LeRoy, B. E. et al. New bone formation and osteolysis by a metastatic, highly invasive canine prostate carcinoma xenograft. Prostate 66, 1213–1222 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Power, C. A. et al. A novel model of bone-metastatic prostate cancer in immunocompetent mice. Prostate 69, 1613–1623 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Rodan, G. A. & Martin, T. J. Therapeutic approaches to bone diseases. Science 289, 1508–1514 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Roodman, G. D. Pathogenesis of myeloma bone disease. Blood Cells Mol. Dis. 32, 290–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Pennisi, A. et al. Inhibitor of DASH proteases affects expression of adhesion molecules in osteoclasts and reduces myeloma growth and bone disease. Br. J. Haematol. 145, 775–787 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tian, E. et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med. 349, 2483–2494 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Jia, D. et al. Repression of multiple myeloma growth and preservation of bone with combined radiotherapy and anti-angiogenic agent. Radiat. Res. 173, 809–817 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stokkel, M. P., Linthorst, M. F., Borm, J. J., Taminiau, A. H. & Pauwels, E. K. A reassessment of bone scintigraphy and commonly tested pretreatment biochemical parameters in newly diagnosed osteosarcoma. J. Cancer Res. Clin. Oncol. 128, 393–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Bussard, K. M., Gay, C. V. & Mastro, A. M. The bone microenvironment in metastasis: what is special about bone? Cancer Metastasis Rev. 27, 41–55 (2008).

    Article  PubMed  Google Scholar 

  44. Fidler, I. J., Gersten, D. M. & Hart, I. R. The biology of cancer invasion and metastasis. Adv. Cancer Res. 28, 149–250 (1978).

    Article  CAS  PubMed  Google Scholar 

  45. Suva, L. J. Adjuvant bisphosphonates in breast cancer: the ABCSG-12 study. Curr. Osteoporos. Rep. 8, 57–59 (2010).

    Article  PubMed  Google Scholar 

  46. Boucharaba, A. et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J. Clin. Invest. 114, 1714–1725 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bendre, M. S. et al. Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Res. 65, 11001–11009 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Jain, S. et al. Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proc. Natl Acad. Sci. USA 104, 9024–9028 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Suva, L. J. et al. Platelet dysfunction and a high bone mass phenotype in a murine model of platelet-type von Willebrand disease. Am. J. Pathol. 172, 430–439 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boilard, E. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327, 580–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chavez-Macgregor, M. et al. Angiogenesis in the bone marrow of patients with breast cancer. Clin. Cancer Res. 11, 5396–5400 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Suva, L. J., Gaddy, D., Perrien, D. S., Thomas, R. L. & Findlay, D. M. Regulation of bone mass by mechanical loading: microarchitecture and genetics. Curr. Osteoporos. Rep. 3, 46–51 (2005).

    Article  PubMed  Google Scholar 

  53. Sanderson, R. D., Yang, Y., Suva, L. J. & Kelly, T. Heparan sulfate proteoglycans and heparanase--partners in osteolytic tumor growth and metastasis. Matrix Biol. 23, 341–352 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Carcel-Trullols, J. et al. Characterization of the glycosylation profile of the human breast cancer cell line, MDA-231, and a bone colonizing variant. Int. J. Oncol. 28, 1173–1183 (2006).

    CAS  PubMed  Google Scholar 

  55. Yang, Y. et al. The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood 110, 2041–2048 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vallet, S. et al. Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc. Natl Acad. Sci. USA 107, 5124–5129 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Scheel, C., Onder, T., Karnoub, A. & Weinberg, R. A. Adaptation versus selection: the origins of metastatic behavior. Cancer Res. 67, 11476–11479 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Li, F., Tiede, B., Massagué, J. & Kang, Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 17, 3–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Talmadge, J. E. Clonal selection of metastasis within the life history of a tumor. Cancer Res. 67, 11471–11475 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L. & Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science 317, 337 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Shi, Y. & Massagué, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Roberts, A. B. & Sporn, M. B. Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors 8, 1–9 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Fournier, P. G., Chirgwin, J. M. & Guise, T. A. New insights into the role of T cells in the vicious cycle of bone metastases. Curr. Opin. Rheumatol. 18, 396–404 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Arya, M., Ahmed, H., Silhi, N., Williamson, M. & Patel, H. R. Clinical importance and therapeutic implications of the pivotal CXCL12-CXCR4 (chemokine ligand-receptor) interaction in cancer cell migration. Tumour Biol. 28, 123–131 (2007).

    Article  PubMed  Google Scholar 

  65. Kang, H. et al. Stromal cell derived factor-1: its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer. Breast Cancer Res. 7, R402–R410 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Massagué, J. & Gomis, R. R. The logic of TGFbeta signaling. FEBS Lett. 580, 2811–2820 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Dallas, S. L., Rosser, J. L., Mundy, G. R. & Bonewald, L. F. Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J. Biol. Chem. 277, 21352–21360 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Mohammad, K. S. et al. Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS One 4, e5275 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Suva, L. J. et al. A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science 237, 893–896 (1987).

    Article  CAS  PubMed  Google Scholar 

  70. Burtis, W. J. et al. Immunochemical characterization of circulating parathyroid hormone-related protein in patients with humoral hypercalcemia of cancer. N. Engl. J. Med. 322, 1106–1112 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA 95, 3597–3602 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Roodman, G. D. & Dougall, W. C. RANK ligand as a therapeutic target for bone metastases and multiple myeloma. Cancer Treat. Rev. 34, 92–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Southby, J. et al. Immunohistochemical localization of parathyroid hormone-related protein in human breast cancer. Cancer Res. 50, 7710–7716 (1990).

    CAS  PubMed  Google Scholar 

  75. Powell, G. J. et al. Localization of parathyroid hormone-related protein in breast cancer metastases: increased incidence in bone compared with other sites. Cancer Res. 51, 3059–3061 (1991).

    CAS  PubMed  Google Scholar 

  76. Guise, T. A. et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J. Clin. Invest. 98, 1544–1549 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Henderson, M. A. et al. Parathyroid hormone-related protein localization in breast cancers predict improved prognosis. Cancer Res. 66, 2250–2256 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Sterling, J. A., Edwards, J. R., Martin, T. J. & Mundy, G. R. Advances in the biology of bone metastasis: How the skeleton affects tumor behavior. Bone doi: 10.1016/j.bone.2010.07.015.

  79. Lu, Y. et al. Monocyte chemotactic protein-1 mediates prostate cancer-induced bone resorption. Cancer Res. 67, 3646–3653 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Lau, Y. S. et al. RANKL-dependent and RANKL-independent mechanisms of macrophage-osteoclast differentiation in breast cancer. Breast Cancer Res. Treat. 105, 7–16 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Weitzmann, M. N., Cenci, S., Rifas, L., Brown, C. & Pacifici, R. Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 96, 1873–1878 (2000).

    CAS  PubMed  Google Scholar 

  82. Kudo, O. et al. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32, 1–7 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Quinn, J. M. et al. Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. J. Bone Miner. Res. 16, 1787–1794 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Kelly, T. et al. Expression of heparanase by primary breast tumors promotes bone resorption in the absence of detectable bone metastases. Cancer Res. 65, 5778–5784 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Kelly, T., Suva, L. J., Nicks, K. M., MacLeod, V. & Sanderson, R. D. Tumor-derived syndecan-1 mediates distal cross-talk with bone that enhances osteoclastogenesis. J. Bone Miner. Res. 25, 1295–1304 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fizazi, K. et al. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J. Clin. Oncol. 27, 1564–1571 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Vallet, S., Smith, M. R. & Raje, N. Novel bone-targeted strategies in oncology. Clin. Cancer Res. 16, 4084–4093 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Body, J. J. et al. A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin. Cancer Res. 12, 1221–1228 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Lipton, A. et al. Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J. Clin. Oncol. 25, 4431–4437 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Lipton, A. et al. Extended efficacy and safety of denosumab in breast cancer patients with bone metastases not receiving prior bisphosphonate therapy. Clin. Cancer Res. 14, 6690–6696 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Vij, R. et al. An open-label, phase 2 trial of denosumab in the treatment of relapsed or plateau-phase multiple myeloma. Am. J. Hematol. 84, 650–656 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. McClung, M. R. et al. Denosumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 354, 821–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Nambi, P., Wu, H. L., Lipshutz, D. & Prabhakar, U. Identification and characterization of endothelin receptors on rat osteoblastic osteosarcoma cells: down-regulation by 1,25-dihydroxy-vitamin D3. Mol. Pharmacol. 47, 266–271 (1995).

    CAS  PubMed  Google Scholar 

  94. Guise, T. A., Yin, J. J. & Mohammad, K. S. Role of endothelin-1 in osteoblastic bone metastases. Cancer 97 (Suppl. 3), 779–784 (2003).

    Article  PubMed  Google Scholar 

  95. Van Sant, C. et al. Endothelin signaling in osteoblasts: global genome view and implication of the calcineurin/NFAT pathway. Mol. Cancer Ther. 6, 253–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Mansson, P. E., Adams, P., Kan, M. & McKeehan, W. L. Heparin-binding growth factor gene expression and receptor characteristics in normal rat prostate and two transplantable rat prostate tumors. Cancer Res. 49, 2485–2494 (1989).

    CAS  PubMed  Google Scholar 

  97. Matuo, Y. et al. Heparin binding affinity of rat prostatic growth factor in normal and cancerous prostates: partial purification and characterization of rat prostatic growth factor in the Dunning tumor. Cancer Res. 47, 188–192 (1987).

    CAS  PubMed  Google Scholar 

  98. Morrissey, C., Brown, L. G., Pitts, T. E., Vessella, R. L. & Corey, E. Bone morphogenetic protein 7 is expressed in prostate cancer metastases and its effects on prostate tumor cells depend on cell phenotype and the tumor microenvironment. Neoplasia 12, 192–205 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bailey, J. M., Singh, P. K. & Hollingsworth, M. A. Cancer metastasis facilitated by developmental pathways: Sonic hedgehog, Notch, and bone morphogenic proteins. J. Cell. Biochem. 102, 829–839 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Harris, S. E. et al. Expression of bone morphogenetic protein messenger RNAs by normal rat and human prostate and prostate cancer cells. Prostate 24, 204–211 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. Kim, I. Y. et al. Expression of bone morphogenetic protein receptors type-IA, -IB and -II correlates with tumor grade in human prostate cancer tissues. Cancer Res. 60, 2840–2844 (2000).

    CAS  PubMed  Google Scholar 

  102. Brubaker, K. D., Corey, E., Brown, L. G. & Vessella, R. L. Bone morphogenetic protein signaling in prostate cancer cell lines. J. Cell. Biochem. 91, 151–160 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Feeley, B. T. et al. Influence of BMPs on the formation of osteoblastic lesions in metastatic prostate cancer. J. Bone Miner. Res. 20, 2189–2199 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Ye, L., Lewis-Russell, J. M., Kynaston, H. & Jiang, W. G. Endogenous bone morphogenetic protein-7 controls the motility of prostate cancer cells through regulation of bone morphogenetic protein antagonists. J. Urol. 178, 1086–1091 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Schwertfeger, K. L. Fibroblast growth factors in development and cancer: insights from the mammary and prostate glands. Curr. Drug Targets 10, 632–644 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Kwabi-Addo, B., Ozen, M. & Ittmann, M. The role of fibroblast growth factors and their receptors in prostate cancer. Endocr. Relat. Cancer 11, 709–724 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Memarzadeh, S. et al. Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and an increase in epithelial androgen receptor. Cancer Cell 12, 572–585 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Acevedo, V. D. et al. Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell 12, 559–571 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Mayahara, H. et al. In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors 9, 73–80 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Izbicka, E. et al. Human amniotic tumor that induces new bone formation in vivo produces growth-regulatory activity in vitro for osteoblasts identified as an extended form of basic fibroblast growth factor. Cancer Res. 56, 633–636 (1996).

    CAS  PubMed  Google Scholar 

  111. Dunstan, C. R. et al. Systemic administration of acidic fibroblast growth factor (FGF-1) prevents bone loss and increases new bone formation in ovariectomized rats. J. Bone Miner. Res. 14, 953–959 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Kodama, N. et al. A local bone anabolic effect of rhFGF2-impregnated gelatin hydrogel by promoting cell proliferation and coordinating osteoblastic differentiation. Bone 44, 699–707 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Bennett, C. N. et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc. Natl Acad. Sci. USA 102, 3324–3329 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hall, C. L. & Keller, E. T. The role of Wnts in bone metastases. Cancer Metastasis Rev. 25, 551–558 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Hall, C. L., Bafico, A., Dai, J., Aaronson, S. A. & Keller, E. T. Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res. 65, 7554–7560 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Clines, G. A. et al. Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. Mol. Endocrinol. 21, 486–498 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Gilbey, A. M., Burnett, D., Coleman, R. E. & Holen, I. The detection of circulating breast cancer cells in blood. J. Clin. Pathol. 57, 903–911 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Vessella, R. L. & Corey, E. Targeting factors involved in bone remodeling as treatment strategies in prostate cancer bone metastasis. Clin. Cancer Res. 12, 6285s–6290s (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Coleman, R. E. Adjuvant bisphosphonates in breast cancer: are we witnessing the emergence of a new therapeutic strategy? Eur. J. Cancer 45, 1909–1915 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Gnant, M. et al. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N. Engl. J. Med. 360, 679–691 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Stopeck, A. T. et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J. Clin. Oncol. doi: 10.1200/JCO.2010.29.7101.

  122. Gonzalez-Angulo, A. M., Morales-Vasquez, F. & Hortobagyi, G. N. Overview of resistance to systemic therapy in patients with breast cancer. Adv. Exp. Med. Biol. 608, 1–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Weigelt, B., Peterse, J. L. & van 't Veer, L. J. Breast cancer metastasis: markers and models. Nat. Rev. Cancer 5, 591–602 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Vaage, J. Metastasizing potentials of mouse mammary tumors and their metastases. Int. J. Cancer 41, 855–858 (1988).

    Article  CAS  PubMed  Google Scholar 

  125. Hill, R. P., Chambers, A. F., Ling, V. & Harris, J. F. Dynamic heterogeneity: rapid generation of metastatic variants in mouse B16 melanoma cells. Science 224, 998–1001 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors dedicate this manuscript to the memory of Dr. Gregory R. Mundy. A fellow ex-patriot Australian, Greg's boundless energy, determination and drive virtually single-handedly motivated all of us to acknowledge and appreciate the intricacies of the bone–tumor microenvironment. His presence, unique perspective and intellect are sorely missed. Work into the mechanisms of cancer progression and bone metastases described in this Review was supported by NIH 5R01CA107160 (R. J. Griffin) and the Carl L. Nelson endowed Chair in Orthopedic Creativity (L. J. Suva).

Author information

Authors and Affiliations

Authors

Contributions

L. J. Suva and C. Washam researched the data for the article. L. J. Suva and R. W. Nicholas provided substantial contributions to discussions of the content. L. J. Suva and R. J. Griffin contributed equally to writing the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Larry J. Suva.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suva, L., Washam, C., Nicholas, R. et al. Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol 7, 208–218 (2011). https://doi.org/10.1038/nrendo.2010.227

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing