Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Serotonin modulates the response of embryonic thalamocortical axons to netrin-1

Abstract

Modifying serotonin (5-HT) abundance in the embryonic mouse brain disrupts the precision of sensory maps formed by thalamocortical axons (TCAs), suggesting that 5-HT influences their growth. We investigated the mechanism by which 5-HT influences TCAs during development. 5-HT1B and 5-HT1D receptor expression in the fetal forebrain overlaps with that of the axon guidance receptors DCC and Unc5c. In coculture assays, axons originating from anterior and posterior halves of the embryonic day 14.5 dorsal thalamus responded differently to netrin-1, reflecting the patterns of DCC and Unc5c expression. 5-HT converts the attraction exerted by netrin-1 on posterior TCAs to repulsion. Pharmacological manipulation of 5-HT1B/1D receptors and intracellular cAMP showed the signaling cascade through which this modulation occurs. An in vivo correlate of altered TCA pathfinding was obtained by transient manipulation of 5-HT1B/1D receptor expression abundance in the dorsal thalamus by in utero electroporation. These data demonstrate that serotonergic signaling has a previously unrecognized role in the modulation of axonal responsiveness to a classic guidance cue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bright-field micrographs illustrate the distribution of Htr1b, Htr1d, Dcc and Unc5c receptor transcripts and Gbx2 transcription factor transcripts in embryonic dorsal thalamus (DT).
Figure 2: Analysis of attractive and repulsive effects of netrin-1 and slit-2 on DT axons in vitro.
Figure 3: 5-HT1B/1D receptors mediate 5-HT modulation of DT axons response to netrin-1.
Figure 4: Modulation of the posterior DT axon response to netrin-1 is mediated by a 5-HT1B/1D–mediated change of intracellular cAMP.
Figure 5: In utero electroporation of E12.5 DT neurons to examine TCA pathway formation in vivo.
Figure 6: Modifying 5-HT1B/1D receptor expression in vivo alters the topography of a subpopulation of TCAs.
Figure 7: Ntn1 (netrin-1) transcript expression in the striatum/IC area at E14.5 and E16.5.
Figure 8: Modifying 5-HT1B/1D receptor expression in vivo alters TCA distribution in the internal capsule.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Rehn, A.E. & Rees, S.M. Investigating the neurodevelopmental hypothesis of schizophrenia. Clin. Exp. Pharmacol. Physiol. 32, 687–696 (2005).

    Article  CAS  Google Scholar 

  2. Persico, A.M. & Bourgeron, T. Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci. 29, 349–358 (2006).

    Article  CAS  Google Scholar 

  3. Gross, C. et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416, 396–400 (2002).

    Article  CAS  Google Scholar 

  4. Ansorge, M.S., Zhou, M., Lira, A., Hen, R. & Gingrich, J.A. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306, 879–881 (2004).

    Article  CAS  Google Scholar 

  5. Haydon, P.G., McCobb, D.P. & Kater, S.B. Serotonin selectively inhibits growth cone motility and synaptogenesis of specific identified neurons. Science 226, 561–564 (1984).

    Article  CAS  Google Scholar 

  6. Whitaker-Azmitia, P.M., Druse, M., Walker, P. & Lauder, J.M. Serotonin as a developmental signal. Behav. Brain Res. 73, 19–29 (1996).

    Article  CAS  Google Scholar 

  7. Vitalis, T. & Parnavelas, J.G. The role of serotonin in early cortical development. Dev. Neurosci. 25, 245–256 (2003).

    Article  CAS  Google Scholar 

  8. Persico, A.M., Di Pino, G. & Levitt, P. Multiple receptors mediate the trophic effects of serotonin on ventroposterior thalamic neurons in vitro. Brain Res. 1095, 17–25 (2006).

    Article  CAS  Google Scholar 

  9. Janusonis, S., Gluncic, V. & Rakic, P. Early serotonergic projections to Cajal-Retzius cells: relevance for cortical development. J. Neurosci. 24, 1652–1659 (2004).

    Article  CAS  Google Scholar 

  10. Cases, O. et al. Lack of barrels in the somatosensory cortex of monoamine oxidase A–deficient mice: role of a serotonin excess during the critical period. Neuron 16, 297–307 (1996).

    Article  CAS  Google Scholar 

  11. Persico, A.M. et al. Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J. Neurosci. 21, 6862–6873 (2001).

    Article  CAS  Google Scholar 

  12. Bonnin, A., Peng, W., Hewlett, W. & Levitt, P. Expression mapping of 5-HT1 serotonin receptor subtypes during fetal and early postnatal mouse forebrain development. Neuroscience 141, 781–794 (2006).

    Article  CAS  Google Scholar 

  13. Braisted, J.E. et al. Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projection. J. Neurosci. 20, 5792–5801 (2000).

    Article  CAS  Google Scholar 

  14. Garel, S. & Rubenstein, J.L. Intermediate targets in formation of topographic projections: inputs from the thalamocortical system. Trends Neurosci. 27, 533–539 (2004).

    Article  CAS  Google Scholar 

  15. Adham, N., Romanienko, P., Hartig, P., Weinshank, R.L. & Branchek, T. The rat 5-hydroxytryptamine1B receptor is the species homologue of the human 5-hydroxytryptamine1D beta receptor. Mol. Pharmacol. 41, 1–7 (1992).

    CAS  PubMed  Google Scholar 

  16. Hamblin, M.W. & Metcalf, M.A. Primary structure and functional characterization of a human 5-HT1D–type serotonin receptor. Mol. Pharmacol. 40, 143–148 (1991).

    CAS  PubMed  Google Scholar 

  17. Ming, G.L. et al. cAMP-dependent growth cone guidance by netrin-1. Neuron 19, 1225–1235 (1997).

    Article  CAS  Google Scholar 

  18. Song, H.J., Ming, G.L. & Poo, M.M. cAMP-induced switching in turning direction of nerve growth cones. Nature 388, 275–279 (1997).

    Article  CAS  Google Scholar 

  19. Hopker, V.H., Shewan, D., Tessier-Lavigne, M., Poo, M. & Holt, C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401, 69–73 (1999).

    Article  CAS  Google Scholar 

  20. Nishiyama, M. et al. Cyclic AMP/GMP–dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature 423, 990–995 (2003).

    Article  CAS  Google Scholar 

  21. Lopez-Bendito, G. & Molnar, Z. Thalamocortical development: how are we going to get there? Nat. Rev. Neurosci. 4, 276–289 (2003).

    Article  CAS  Google Scholar 

  22. Marillat, V. et al. Spatiotemporal expression patterns of slit and robo genes in the rat brain. J. Comp. Neurol. 442, 130–155 (2002).

    Article  Google Scholar 

  23. Miyashita-Lin, E.M., Hevner, R., Wassarman, K.M., Martinez, S. & Rubenstein, J.L. Early neocortical regionalization in the absence of thalamic innervation. Science 285, 906–909 (1999).

    Article  CAS  Google Scholar 

  24. Gad, J.M., Keeling, S.L., Wilks, A.F., Tan, S.S. & Cooper, H.M. The expression patterns of guidance receptors, DCC and Neogenin, are spatially and temporally distinct throughout mouse embryogenesis. Dev. Biol. 192, 258–273 (1997).

    Article  CAS  Google Scholar 

  25. Przyborski, S.A., Knowles, B.B. & Ackerman, S.L. Embryonic phenotype of Unc5h3 mutant mice suggests chemorepulsion during the formation of the rostral cerebellar boundary. Development 125, 41–50 (1998).

    CAS  PubMed  Google Scholar 

  26. Li, H.S. et al. Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell 96, 807–818 (1999).

    Article  CAS  Google Scholar 

  27. Liu, G. et al. Netrin requires focal adhesion kinase and Src family kinases for axon outgrowth and attraction. Nat. Neurosci. 7, 1222–1232 (2004).

    Article  CAS  Google Scholar 

  28. Round, J. & Stein, E. Netrin signaling leading to directed growth cone steering. Curr. Opin. Neurobiol. 17, 15–21 (2007).

    Article  CAS  Google Scholar 

  29. Lotto, B., Upton, L., Price, D.J. & Gaspar, P. Serotonin receptor activation enhances neurite outgrowth of thalamic neurones in rodents. Neurosci. Lett. 269, 87–90 (1999).

    Article  CAS  Google Scholar 

  30. Geerts, I.S., Matthys, K.E., Herman, A.G. & Bult, H. Involvement of 5-HT1B receptors in collar-induced hypersensitivity to 5-hydroxytryptamine of the rabbit carotid artery. Br. J. Pharmacol. 127, 1327–1336 (1999).

    Article  CAS  Google Scholar 

  31. Price, G.W. et al. SB-216641 and BRL-15572–compounds to pharmacologically discriminate h5-HT1B and h5-HT1D receptors. Naunyn Schmiedebergs Arch. Pharmacol. 356, 312–320 (1997).

    Article  CAS  Google Scholar 

  32. Rothermel, J.D. & Parker Botelho, L.H. A mechanistic and kinetic analysis of the interactions of the diastereoisomers of adenosine 3′,5′-(cyclic)phosphorothioate with purified cyclic AMP-dependent protein kinase. Biochem. J. 251, 757–762 (1988).

    Article  CAS  Google Scholar 

  33. Torii, M. & Levitt, P. Dissociation of corticothalamic and thalamocortical axon targeting by an EphA7-mediated mechanism. Neuron 48, 563–575 (2005).

    Article  CAS  Google Scholar 

  34. Nakashiba, T. et al. Netrin-G1: a novel glycosyl phosphatidylinositol-linked mammalian netrin that is functionally divergent from classical netrins. J. Neurosci. 20, 6540–6550 (2000).

    Article  CAS  Google Scholar 

  35. Auladell, C., Perez-Sust, P., Super, H. & Soriano, E. The early development of thalamocortical and corticothalamic projections in the mouse. Anat. Embryol. (Berl.) 201, 169–179 (2000).

    Article  CAS  Google Scholar 

  36. Molnar, Z. & Blakemore, C. How do thalamic axons find their way to the cortex? Trends Neurosci. 18, 389–397 (1995).

    Article  CAS  Google Scholar 

  37. Wiencken-Barger, A.E., Mavity-Hudson, J., Bartsch, U., Schachner, M. & Casagrande, V.A. The role of L1 in axon pathfinding and fasciculation. Cereb. Cortex 14, 121–131 (2004).

    Article  CAS  Google Scholar 

  38. Vanderhaeghen, P. & Polleux, F. Developmental mechanisms patterning thalamocortical projections: intrinsic, extrinsic and in between. Trends Neurosci. 27, 384–391 (2004).

    Article  CAS  Google Scholar 

  39. Seibt, J. et al. Neurogenin2 specifies the connectivity of thalamic neurons by controlling axon responsiveness to intermediate target cues. Neuron 39, 439–452 (2003).

    Article  CAS  Google Scholar 

  40. Crandall, J.E. & Caviness, V.S., Jr. Thalamocortical connections in newborn mice. J. Comp. Neurol. 228, 542–556 (1984).

    Article  CAS  Google Scholar 

  41. Garel, S., Yun, K., Grosschedl, R. & Rubenstein, J.L. The early topography of thalamocortical projections is shifted in Ebf1 and Dlx1/2 mutant mice. Development 129, 5621–5634 (2002).

    Article  CAS  Google Scholar 

  42. Molnar, Z., Adams, R. & Blakemore, C. Mechanisms underlying the early establishment of thalamocortical connections in the rat. J. Neurosci. 18, 5723–5745 (1998).

    Article  CAS  Google Scholar 

  43. Bruns, D., Riedel, D., Klingauf, J. & Jahn, R. Quantal release of serotonin. Neuron 28, 205–220 (2000).

    Article  CAS  Google Scholar 

  44. Clements, J.D. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci. 19, 163–171 (1996).

    Article  CAS  Google Scholar 

  45. Bouchard, J.F. et al. Protein kinase A activation promotes plasma membrane insertion of DCC from an intracellular pool: a novel mechanism regulating commissural axon extension. J. Neurosci. 24, 3040–3050 (2004).

    Article  CAS  Google Scholar 

  46. Kreibich, T.A., Chalasani, S.H. & Raper, J.A. The neurotransmitter glutamate reduces axonal responsiveness to multiple repellents through the activation of metabotropic glutamate receptor 1. J. Neurosci. 24, 7085–7095 (2004).

    Article  CAS  Google Scholar 

  47. Aitken, A.R. & Tork, I. Early development of serotonin-containing neurons and pathways as seen in wholemount preparations of the fetal rat brain. J. Comp. Neurol. 274, 32–47 (1988).

    Article  CAS  Google Scholar 

  48. Puelles, L. & Rubenstein, J.L. Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci. 26, 469–476 (2003).

    Article  CAS  Google Scholar 

  49. Fan, C.M. & Tessier-Lavigne, M. Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 79, 1175–1186 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Wu and H.H. Wu for technical help and comments, and K.L. Eagleson and G. Stanwood for comments on the manuscript. The work was supported in part by US National Institute of Mental Health grant MH65299 and US National Institute of Child Health and Human Development P30HD15052 to P.L.

Author information

Authors and Affiliations

Authors

Contributions

A.B. participated in the design of the project, the writing of the manuscript and conducted and analyzed the experiments. M.T. conducted and participated in the analyses of crucial in utero electroporation experiments and helped to write the manuscript. L.W. performed the statistical analyses. P.R. contributed to the in vivo experiments and helped to write the manuscript. P.L. contributed to the design of the experiments, interpretation of results and writing of the manuscript.

Corresponding author

Correspondence to Pat Levitt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Putative 5-HT signaling in development. (PDF 496 kb)

Supplementary Fig. 2

Putative 5-HT signaling in development. (PDF 892 kb)

Supplementary Fig. 3

Quantification of netrin-G1 immunofluorescent intensity at E18.5 on the control and electroporated side of brains electroporated at E12.5. (PDF 170 kb)

Supplementary Fig. 4

Pathways of TCAs from anterior and posterior DT in horizontal sections at E14.5. (PDF 1312 kb)

Supplementary Fig. 5

Anterior-posterior positioning of TCAs in the IC is associated with their medial-lateral, rather than anterior-posterior, origin in the DT. (PDF 1262 kb)

Supplementary Fig. 6

Comparison between Gbx2 and Unc5c expression patterns in dorso-ventral series of horizontal sections through the E14.5 DT. (PDF 489 kb)

Supplementary Fig. 7

Schematic representation of TCA pathfinding. (PDF 63 kb)

Supplementary Methods (PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnin, A., Torii, M., Wang, L. et al. Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nat Neurosci 10, 588–597 (2007). https://doi.org/10.1038/nn1896

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1896

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing