Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Proteostasis and aging

Abstract

Accumulation of intracellular damage is an almost universal hallmark of aging. An improved understanding of the systems that contribute to cellular protein quality control has shed light on the reasons for the increased vulnerability of the proteome to stress in aging cells. Maintenance of protein homeostasis, or proteostasis, is attained through precisely coordinated systems that rapidly correct unwanted proteomic changes. Here we focus on recent developments that highlight the multidimensional nature of the proteostasis networks, which allow for coordinated protein homeostasis intracellularly, in between cells and even across organs, as well as on how they affect common age-associated diseases when they malfunction in aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes with age in intracellular proteostasis systems.

Debbie Maizels/Nature Publishing Group

Figure 2: Organelle proteostasis networks.

Debbie Maizels/Nature Publishing Group

Figure 3: Schematic of possible mediators of intercellular proteostasis: exosomes and nanotubes.

Debbie Maizels/Nature Publishing Group

Similar content being viewed by others

References

  1. Vilchez, D., Saez, I. & Dillin, A. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat. Commun. 5, 5659 (2014).

    CAS  PubMed  Google Scholar 

  2. Roth, D.M. & Balch, W.E. Modeling general proteostasis: proteome balance in health and disease. Curr. Opin. Cell Biol. 23, 126–134 (2011).

    CAS  PubMed  Google Scholar 

  3. Morimoto, R.I. & Cuervo, A.M. Proteostasis and the aging proteome in health and disease. J. Gerontol. A Biol. Sci. Med. Sci. 69 (suppl. 1), S33–S38 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Labbadia, J. & Morimoto, R.I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435–464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Labbadia, J. & Morimoto, R.I. Proteostasis and longevity: when does aging really begin? F1000Prime Rep. 6, 7 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Treaster, S.B. et al. Superior proteome stability in the longest lived animal. Age (Dordr) 36, 9597 (2014).

    CAS  Google Scholar 

  7. Pérez, V.I. et al. Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc. Natl. Acad. Sci. USA 106, 3059–3064 (2009).

    PubMed  PubMed Central  Google Scholar 

  8. Tyedmers, J., Mogk, A. & Bukau, B. Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 11, 777–788 (2010).

    CAS  PubMed  Google Scholar 

  9. Feldman, D.E. & Frydman, J. Protein folding in vivo: the importance of molecular chaperones. Curr. Opin. Struct. Biol. 10, 26–33 (2000).

    CAS  PubMed  Google Scholar 

  10. Navon, A. & Ciechanover, A. The 26 S proteasome: from basic mechanisms to drug targeting. J. Biol. Chem. 284, 33713–33718 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanaka, K. The proteasome: overview of structure and functions. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 85, 12–36 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaushik, S. & Cuervo, A.M. Chaperones in autophagy. Pharmacol. Res. 66, 484–493 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lamark, T. & Johansen, T. Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int. J. Cell Biol. 2012, 736905 (2012).

    PubMed  PubMed Central  Google Scholar 

  14. Arndt, V. et al. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr. Biol. 20, 143–148 (2010).

    CAS  PubMed  Google Scholar 

  15. Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495–501 (2014).

    CAS  PubMed  Google Scholar 

  16. Ma, Y. & Li, J. Metabolic shifts during aging and pathology. Compr. Physiol. 5, 667–686 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Ritz, P. & Berrut, G. Mitochondrial function, energy expenditure, aging and insulin resistance. Diabetes Metab. 31 (spec. no. 2), 5S67–5S73 (2005).

    CAS  PubMed  Google Scholar 

  18. Brehme, M. et al. A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep. 9, 1135–1150 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, A. et al. Protein aggregation can inhibit clathrin-mediated endocytosis by chaperone competition. Proc. Natl. Acad. Sci. USA 111, E1481–E1490 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Vanhooren, V. et al. Protein modification and maintenance systems as biomarkers of ageing. Mech. Ageing Dev. doi:10.1016/j.mad.2015.03.009 (2015).

  21. Morrow, G., Samson, M., Michaud, S. & Tanguay, R.M. Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J. 18, 598–599 (2004).

    CAS  PubMed  Google Scholar 

  22. Walther, D.M. et al. Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161, 919–932 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rubinsztein, D.C., Marino, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).

    CAS  PubMed  Google Scholar 

  24. Chondrogianni, N., Georgila, K., Kourtis, N., Tavernarakis, N. & Gonos, E.S. 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans. FASEB J. 29, 611–622 (2015).

    CAS  PubMed  Google Scholar 

  25. Madeo, F., Zimmermann, A., Maiuri, M.C. & Kroemer, G. Essential role for autophagy in life span extension. J. Clin. Invest. 125, 85–93 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Pyo, J.O. et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 4, 2300 (2013).

    PubMed  Google Scholar 

  27. Morton, J.P., Kayani, A.C., McArdle, A. & Drust, B. The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med. 39, 643–662 (2009).

    PubMed  Google Scholar 

  28. Ulbricht, A. et al. Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle. Autophagy 11, 538–546 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. He, C. et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511–515 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jamart, C. et al. Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running. J. Appl. Physiol. 112, 1529–1537 (2012).

    CAS  PubMed  Google Scholar 

  31. Katsiki, M., Chondrogianni, N., Chinou, I., Rivett, A.J. & Gonos, E.S. The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuvenation Res. 10, 157–172 (2007).

    CAS  PubMed  Google Scholar 

  32. Salomone, F. et al. Coffee enhances the expression of chaperones and antioxidant proteins in rats with nonalcoholic fatty liver disease. Transl. Res. 163, 593–602 (2014).

    CAS  PubMed  Google Scholar 

  33. Ben-Zvi, A., Miller, E.A. & Morimoto, R.I. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc. Natl. Acad. Sci. USA 106, 14914–14919 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Iram, A. & Naeem, A. Protein folding, misfolding, aggregation and their implications in human diseases: discovering therapeutic ways to amyloid-associated diseases. Cell Biochem. Biophys. 70, 51–61 (2014).

    CAS  PubMed  Google Scholar 

  35. Kim, Y.E., Hipp, M.S., Bracher, A., Hayer-Hartl, M. & Hartl, F.U. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82, 323–355 (2013).

    CAS  PubMed  Google Scholar 

  36. Park, C. & Cuervo, A.M. Selective autophagy: talking with the UPS. Cell Biochem. Biophys. 67, 3–13 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Korolchuk, V.I., Menzies, F.M. & Rubinsztein, D.C. Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett. 584, 1393–1398 (2010).

    CAS  PubMed  Google Scholar 

  38. Kaushik, S., Massey, A., Mizushima, N. & Cuervo, A.M. Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol. Biol. Cell 19, 2179–2192 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Massey, A.C., Kaushik, S., Sovak, G., Kiffin, R. & Cuervo, A.M. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA 103, 5805–5810 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gavilán, E. et al. Age-related dysfunctions of the autophagy lysosomal pathway in hippocampal pyramidal neurons under proteasome stress. Neurobiol. Aging 36, 1953–1963 (2015).

    PubMed  Google Scholar 

  41. Schneider, J.L. et al. Loss of hepatic chaperone-mediated autophagy accelerates proteostasis failure in aging. Aging Cell 14, 249–264 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rodríguez-Muela, N. et al. Balance between autophagic pathways preserves retinal homeostasis. Aging Cell 12, 478–488 (2013).

    PubMed  Google Scholar 

  43. Tsvetkov, P. et al. Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome. eLIFE 4 doi:10.7554/eLife.08467 (2015).

  44. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    CAS  PubMed  Google Scholar 

  45. Brodsky, J.L. Cleaning up: ER-associated degradation to the rescue. Cell 151, 1163–1167 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Khaminets, A. et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354–358 (2015).

    CAS  PubMed  Google Scholar 

  47. Moreno, J.A. et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl. Med. 5, 206ra138 (2013).

    PubMed  Google Scholar 

  48. Cao, S.S. & Kaufman, R.J. Targeting endoplasmic reticulum stress in metabolic disease. Expert Opin. Ther. Targets 17, 437–448 (2013).

    CAS  PubMed  Google Scholar 

  49. Hou, N.S. et al. Activation of the endoplasmic reticulum unfolded protein response by lipid disequilibrium without disturbed proteostasis in vivo. Proc. Natl. Acad. Sci. USA 111, E2271–E2280 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Satpute-Krishnan, P. et al. ER stress-induced clearance of misfolded GPI-anchored proteins via the secretory pathway. Cell 158, 522–533 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lemasters, J.J. Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biol. 2, 749–754 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Heo, J.M. et al. A stress-responsive system for mitochondrial protein degradation. Mol. Cell 40, 465–480 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Braun, R.J. et al. Accumulation of basic amino acids at mitochondria dictates the cytotoxicity of aberrant ubiquitin. Cell Rep. 10, 1557–1571 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Jovaisaite, V. & Auwerx, J. The mitochondrial unfolded protein response-synchronizing genomes. Curr. Opin. Cell Biol. 33, 74–81 (2015).

    CAS  PubMed  Google Scholar 

  55. Haynes, C.M. & Ron, D. The mitochondrial UPR - protecting organelle protein homeostasis. J. Cell Sci. 123, 3849–3855 (2010).

    CAS  PubMed  Google Scholar 

  56. Jensen, M.B. & Jasper, H. Mitochondrial proteostasis in the control of aging and longevity. Cell Metab. 20, 214–225 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. McDonnell, E., Peterson, B.S., Bomze, H.M. & Hirschey, M.D. SIRT3 regulates progression and development of diseases of aging. Trends Endocrinol. Metab. 26, 486–492 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mohrin, M. et al. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347, 1374–1377 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Shibata, Y. & Morimoto, R.I. How the nucleus copes with proteotoxic stress. Curr. Biol. 24, R463–R474 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Andersen, J.S. et al. Nucleolar proteome dynamics. Nature 433, 77–83 (2005).

    CAS  PubMed  Google Scholar 

  61. Janer, A. et al. PML clastosomes prevent nuclear accumulation of mutant ataxin-7 and other polyglutamine proteins. J. Cell Biol. 174, 65–76 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ullrich, O. et al. Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc. Natl. Acad. Sci. USA 96, 6223–6228 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lam, Y.W., Lamond, A.I., Mann, M. & Andersen, J.S. Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr. Biol. 17, 749–760 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Iwata, A. et al. Intranuclear degradation of polyglutamine aggregates by the ubiquitin-proteasome system. J. Biol. Chem. 284, 9796–9803 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tan, K. et al. Mitochondrial SSBP1 protects cells from proteotoxic stresses by potentiating stress-induced HSF1 transcriptional activity. Nat. Commun. 6, 6580 (2015).

    CAS  PubMed  Google Scholar 

  66. Hung, Y.H., Chen, L.M., Yang, J.Y. & Yang, W.Y. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat. Commun. 4, 2111 (2013).

    PubMed  Google Scholar 

  67. Bejarano, E. et al. Connexins modulate autophagosome biogenesis. Nat. Cell Biol. 16, 401–414 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Takeuchi, T. et al. Intercellular chaperone transmission via exosomes contributes to maintenance of protein homeostasis at the organismal level. Proc. Natl. Acad. Sci. USA 112, E2497–E2506 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lo Cicero, A., Stahl, P.D. & Raposo, G. Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr. Opin. Cell Biol. 35, 69–77 (2015).

    CAS  PubMed  Google Scholar 

  70. Cannizzo, E.S. et al. Age-related oxidative stress compromises endosomal proteostasis. Cell Rep. 2, 136–149 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Goetzl, E.J. et al. Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology 85, 40–47 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Astanina, K., Koch, M., Jungst, C., Zumbusch, A. & Kiemer, A.K. Lipid droplets as a novel cargo of tunnelling nanotubes in endothelial cells. Sci. Rep. 5, 11453 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. Burtey, A. et al. Intercellular transfer of transferrin receptor by a contact-, Rab8-dependent mechanism involving tunneling nanotubes. FASEB J. 29, 4695–4712 (2015).

    CAS  PubMed  Google Scholar 

  74. Wang, X. & Gerdes, H.H. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 22, 1181–1191 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, X. et al. Rescue of brain function using tunneling nanotubes between neural stem cells and brain microvascular endothelial cells. Mol. Neurobiol. doi:10.1007/s12035-015-9225-z (2015).

  76. Agosta, F., Weiler, M. & Filippi, M. Propagation of pathology through brain networks in neurodegenerative diseases: from molecules to clinical phenotypes. CNS Neurosci. Ther. 21, 754–767 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. Russo, I., Bubacco, L. & Greggio, E. Exosomes-associated neurodegeneration and progression of Parkinson′s disease. Am. J. Neurodegener. Dis. 1, 217–225 (2012).

    PubMed  PubMed Central  Google Scholar 

  78. Prusiner, S.B. Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet. 47, 601–623 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gousset, K. et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat. Cell Biol. 11, 328–336 (2009).

    CAS  PubMed  Google Scholar 

  80. Malkus, K.A. & Ischiropoulos, H. Regional deficiencies in chaperone-mediated autophagy underlie alpha-synuclein aggregation and neurodegeneration. Neurobiol. Dis. 46, 732–744 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, Y., Zhang, X., Chen, W., Tan, Y.L. & Kelly, J.W. Fluorescence turn-on folding sensor to monitor proteome stress in live cells. J. Am. Chem. Soc. 137, 11303–11311 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Arrasate, M. & Finkbeiner, S. Automated microscope system for determining factors that predict neuronal fate. Proc. Natl. Acad. Sci. USA 102, 3840–3845 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. van Oosten-Hawle, P., Porter, R.S. & Morimoto, R.I. Regulation of organismal proteostasis by transcellular chaperone signaling. Cell 153, 1366–1378 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Taylor, R.C. & Dillin, A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153, 1435–1447 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Williams, K.W. et al. Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis. Cell Metab. 20, 471–482 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Genereux, J.C. et al. Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis. EMBO J. 34, 4–19 (2015).

    CAS  PubMed  Google Scholar 

  87. Conboy, M.J., Conboy, I.M. & Rando, T.A. Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity. Aging Cell 12, 525–530 (2013).

    CAS  PubMed  Google Scholar 

  88. Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630–634 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. de Cabo, R. et al. Serum from calorie-restricted animals delays senescence and extends the lifespan of normal human fibroblasts in vitro. Aging (Albany, NY) 7, 152–166 (2015).

    CAS  Google Scholar 

  90. Pratt, W.B., Gestwicki, J.E., Osawa, Y. & Lieberman, A.P. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 55, 353–371 (2015).

    CAS  PubMed  Google Scholar 

  91. Walker, G.A. & Lithgow, G.J. Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2, 131–139 (2003).

    CAS  PubMed  Google Scholar 

  92. Steinkraus, K.A. et al. Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans. Aging Cell 7, 394–404 (2008).

    CAS  PubMed  Google Scholar 

  93. Chavous, D.A., Jackson, F.R. & O'Connor, C.M. Extension of the Drosophila lifespan by overexpression of a protein repair methyltransferase. Proc. Natl. Acad. Sci. USA 98, 14814–14818 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ruan, H. et al. High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc. Natl. Acad. Sci. USA 99, 2748–2753 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kruegel, U. et al. Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet. 7, e1002253 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Vilchez, D. et al. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 489, 263–268 (2012).

    CAS  PubMed  Google Scholar 

  97. Depuydt, G. et al. Reduced insulin/insulin-like growth factor-1 signaling and dietary restriction inhibit translation but preserve muscle mass in Caenorhabditis elegans. Mol. Cell. Proteomics 12, 3624–3639 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Demontis, F. & Perrimon, N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143, 813–825 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tonoki, A. et al. Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol. Cell. Biol. 29, 1095–1106 (2009).

    CAS  PubMed  Google Scholar 

  100. Crowe, E., Sell, C., Thomas, J.D., Johannes, G.J. & Torres, C. Activation of proteasome by insulin-like growth factor-I may enhance clearance of oxidized proteins in the brain. Mech. Ageing Dev. 130, 793–800 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Meléndez, A. et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387–1391 (2003).

    PubMed  Google Scholar 

  102. Jia, K. & Levine, B. Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3, 597–599 (2007).

    PubMed  Google Scholar 

  103. Morselli, E. et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis. 1, e10 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305–1314 (2009).

    CAS  PubMed  Google Scholar 

  105. Simonsen, A. et al. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4, 176–184 (2008).

    CAS  PubMed  Google Scholar 

  106. Bjedov, I. et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 35–46 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Labunskyy, V.M. et al. Lifespan extension conferred by endoplasmic reticulum secretory pathway deficiency requires induction of the unfolded protein response. PLoS Genet. 10, e1004019 (2014).

    PubMed  PubMed Central  Google Scholar 

  108. Barros, M.H., Bandy, B., Tahara, E.B. & Kowaltowski, A.J. Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J. Biol. Chem. 279, 49883–49888 (2004).

    CAS  PubMed  Google Scholar 

  109. McCormick, M.A. et al. A comprehensive analysis of replicative lifespan in 4,698 single-gene deletion strains uncovers conserved mechanisms of aging. Cell Metab. 22, 895–906 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Henis-Korenblit, S. et al. Insulin/IGF-1 signaling mutants reprogram ER stress response regulators to promote longevity. Proc. Natl. Acad. Sci. USA 107, 9730–9735 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Shore, D.E., Carr, C.E. & Ruvkun, G. Induction of cytoprotective pathways is central to the extension of lifespan conferred by multiple longevity pathways. PLoS Genet. 8, e1002792 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, D., Thomas, E.L. & Kapahi, P. HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet. 5, e1000486 (2009).

    PubMed  PubMed Central  Google Scholar 

  113. Zid, B.M. et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139, 149–160 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kim, H.J., Morrow, G., Westwood, J.T., Michaud, S. & Tanguay, R.M. Gene expression profiling implicates OXPHOS complexes in lifespan extension of flies over-expressing a small mitochondrial chaperone, Hsp22. Exp. Gerontol. 45, 611–620 (2010).

    CAS  PubMed  Google Scholar 

  115. Owusu-Ansah, E., Song, W. & Perrimon, N. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155, 699–712 (2013).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Cuervo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, S., Cuervo, A. Proteostasis and aging. Nat Med 21, 1406–1415 (2015). https://doi.org/10.1038/nm.4001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4001

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing