Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans

Abstract

The perception of pain is subject to powerful influences. Understanding how these are mediated at a neuroanatomical and neurobiological level provides us with valuable information that has a direct impact on our ability to harness positive and minimize negative effects therapeutically, as well as optimize clinical trial designs when developing new analgesics. This is particularly relevant for placebo and nocebo effects. New research findings have directly contributed to an increased understanding of how placebo and nocebo effects are produced and what biological and psychological factors influence variances in the magnitude of the effect. The findings have relevance for chronic pain states and other disorders, where abnormal functioning of crucial brain regions might affect analgesic outcome even in the normal therapeutic setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors influencing pain perception and the neural basis for endogenous pain modulation, placebo and nocebo effects.
Figure 2: The patient environment.

Similar content being viewed by others

References

  1. Tracey, I. & Mantyh, P.W. The cerebral signature for pain perception and its modulation. Neuron 55, 377–391 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Finniss, D.G., Kaptchuk, T.J., Miller, F. & Benedetti, F. Biological, clinical and ethical advances of placebo effects. Lancet 375, 686–695 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Haygarth, J. Of the Imagination, as a Cause and as a Cure of Disorders of the Body, Exemplified by Fictitious Tractors, and Epidemical Convulsions. (Crutwell, Bath, England, 1801).

    Google Scholar 

  4. Beecher, H.K. The powerful placebo. J. Am. Med. Assoc. 159, 1602–1606 (1955).

    Article  CAS  PubMed  Google Scholar 

  5. Miller, F.G. & Kaptchuk, T.J. The power of context: reconceptualizing the placebo effect. J. R. Soc. Med. 101, 222–225 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Price, D.D., Finniss, D.G. & Benedetti, F. A comprehensive review of the placebo effect: recent advances and current thought. Annu. Rev. Psychol. 59, 565–590 (2008).

    Article  PubMed  Google Scholar 

  7. Colloca, L., Benedetti, F. & Porro, C.A. Experimental designs and brain mapping approaches for studying the placebo analgesic effect. Eur. J. Appl. Physiol. 102, 371–380 (2008).

    Article  PubMed  Google Scholar 

  8. Benedetti, F. Mechanisms of placebo and placebo-related effects across diseases and treatments. Annu. Rev. Pharmacol. Toxicol. 48, 33–60 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Borsook, D., Sava, S. & Becerra, L. The pain imaging revolution: advancing pain into the 21st century. Neuroscientist 16, 171–185 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wiech, K., Ploner, M. & Tracey, I. Neurocognitive aspects of pain perception. Trends Cogn. Sci. 12, 306–313 (2008).

    Article  PubMed  Google Scholar 

  11. Wiech, K. & Tracey, I. The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage 47, 987–994 (2009).

    Article  PubMed  Google Scholar 

  12. Apkarian, A.V., Baliki, M.N. & Geha, P.Y. Towards a theory of chronic pain. Prog. Neurobiol. 87, 81–97 (2009).

    Article  PubMed  Google Scholar 

  13. Apkarian, A.V., Bushnell, M.C., Treede, R.D. & Zubieta, J.K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9, 463–484 (2005).

    Article  PubMed  Google Scholar 

  14. Fields, H. Central nervous system mechanisms of pain modulation. in Textbook of Pain 4th edn. (ed. Wall, P.D. & Melzack, R.) 125–142 (Churchill Livingstone, London, 2005).

  15. Basbaum, A.I. & Fields, H.L. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci. 7, 309–338 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Gebhart, G.F. Descending modulation of pain. Neurosci. Biobehav. Rev. 27, 729–737 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki, R., Rygh, L.J. & Dickenson, A.H. Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol. Sci. 25, 613–617 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Porreca, F., Ossipov, M.H. & Gebhart, G.F. Chronic pain and medullary descending facilitation. Trends Neurosci. 25, 319–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Gwilym, S.E. et al. Psychophysical and functional imaging evidence supporting the presence of central sensitization in a cohort of osteoarthritis patients. Arthritis Rheum. 61, 1226–1234 (2009).

    Article  PubMed  Google Scholar 

  20. Lee, M.C., Zambreanu, L., Menon, D.K. & Tracey, I. Identifying brain activity specifically related to the maintenance and perceptual consequence of central sensitization in humans. J. Neurosci. 28, 11642–11649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tracey, I. et al. Imaging attentional modulation of pain in the periaqueductal gray in humans. J. Neurosci. 22, 2748–2752 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Valet, M. et al. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain—an fMRI analysis. Pain 109, 399–408 (2004).

    Article  PubMed  Google Scholar 

  23. Lorenz, J., Minoshima, S. & Casey, K.L. Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126, 1079–1091 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Seifert, F. et al. Medial prefrontal cortex activity is predictive for hyperalgesia and pharmacological antihyperalgesia. J. Neurosci. 29, 6167–6175 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ochsner, K.N. & Gross, J.J. The cognitive control of emotion. Trends Cogn. Sci. 9, 242–249 (2005).

    Article  PubMed  Google Scholar 

  26. Kalisch, R. et al. Anxiety reduction through detachment: subjective, physiological and neural effects. J. Cogn. Neurosci. 17, 874–883 (2005).

    Article  PubMed  Google Scholar 

  27. Kalisch, R., Wiech, K., Herrmann, K. & Dolan, R.J. Neural correlates of self-distraction from anxiety and a process model of cognitive emotion regulation. J. Cogn. Neurosci. 18, 1266–1276 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wiech, K. et al. Anterolateral prefrontal cortex mediates the analgesic effect of expected and perceived control over pain. J. Neurosci. 26, 11501–11509 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wager, T.D., Davidson, M.L., Hughes, B.L., Lindquist, M.A. & Ochsner, K.N. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ochsner, K.N. et al. Your pain or mine? Common and distinct neural systems supporting the perception of pain in self and other. Soc. Cogn. Affect. Neurosci. 3, 144–160 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Phelps, E.A., Delgado, M.R., Nearing, K.I. & LeDoux, J.E. Extinction learning in humans: role of the amygdala and vmPFC. Neuron 43, 897–905 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Quirk, G.J., Garcia, R. & Gonzalez-Lima, F. Prefrontal mechanisms in extinction of conditioned fear. Biol. Psychiatry 60, 337–343 (2006).

    Article  PubMed  Google Scholar 

  33. Ploghaus, A. et al. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J. Neurosci. 21, 9896–9903 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dias, R., Robbins, T.W. & Roberts, A.C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380, 69–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Vase, L., Robinson, M.E., Verne, G.N. & Price, D.D. The contributions of suggestion, desire, and expectation to placebo effects in irritable bowel syndrome patients. An empirical investigation. Pain 105, 17–25 (2003).

    Article  PubMed  Google Scholar 

  36. Koyama, T., McHaffie, J.G., Laurienti, P.J. & Coghill, R.C. The subjective experience of pain: where expectations become reality. Proc. Natl. Acad. Sci. USA 102, 12950–12955 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Keltner, J.R. et al. Isolating the modulatory effect of expectation on pain transmission: a functional magnetic resonance imaging study. J. Neurosci. 26, 4437–4443 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ploghaus, A. et al. Dissociating pain from its anticipation in the human brain. Science 284, 1979–1981 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Fairhurst, M., Wiech, K., Dunckley, P. & Tracey, I. Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 128, 101–110 (2007).

    Article  PubMed  Google Scholar 

  40. Benedetti, F., Amanzio, M., Casadio, C., Oliaro, A. & Maggi, G. Blockade of nocebo hyperalgesia by the cholecystokinin antagonist proglumide. Pain 71, 135–140 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Benedetti, F., Amanzio, M., Vighetti, S. & Asteggiano, G. The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J. Neurosci. 26, 12014–12022 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kong, J. et al. A functional magnetic resonance imaging study on the neural mechanisms of hyperalgesic nocebo effect. J. Neurosci. 28, 13354–13362 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaptchuk, T.J. et al. “Maybe I made up the whole thing”: placebos and patients' experiences in a randomized controlled trial. Cult. Med. Psychiatry 33, 382–411 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Voudouris, N.J., Peck, C.L. & Coleman, G. The role of conditioning and verbal expectancy in the placebo response. Pain 43, 121–128 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Ader, R., Cohen, N. & Felten, D. Psychoneuroimmunology: interactions between the nervous system and the immune system. Lancet 345, 99–103 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Price, D.D. et al. An analysis of factors that contribute to the magnitude of placebo analgesia in an experimental paradigm. Pain 83, 147–156 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Montgomery, G.H. & Kirsch, I. Classical conditioning and the placebo effect. Pain 72, 107–113 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Morton, D.L., Watson, A., El-Deredy, W. & Jones, A.K. Reproducibility of placebo analgesia: Effect of dispositional optimism. Pain 146, 194–198 (2009).

    Article  PubMed  Google Scholar 

  49. Benedetti, F., Arduino, C. & Amanzio, M. Somatotopic activation of opioid systems by target-directed expectations of analgesia. J. Neurosci. 19, 3639–3648 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Amanzio, M. & Benedetti, F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. J. Neurosci. 19, 484–494 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pacheco-López, G., Engler, H., Niemi, M.B. & Schedlowski, M. Expectations and associations that heal: Immunomodulatory placebo effects and its neurobiology. Brain Behav. Immun. 20, 430–446 (2006).

    Article  PubMed  Google Scholar 

  52. Goebel, M.U. et al. Behavioral conditioning of immunosuppression is possible in humans. FASEB J. 16, 1869–1873 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Benedetti, F. et al. Conscious expectation and unconscious conditioning in analgesic, motor, and hormonal placebo/nocebo responses. J. Neurosci. 23, 4315–4323 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Levine, J.D., Gordon, N.C. & Fields, H.L. The mechanism of placebo analgesia. Lancet 2, 654–657 (1978).

    Article  CAS  PubMed  Google Scholar 

  55. Lipman, J.J. et al. Peak B endorphin concentration in cerebrospinal fluid: reduced in chronic pain patients and increased during the placebo response. Psychopharmacology (Berl.) 102, 112–116 (1990).

    Article  CAS  Google Scholar 

  56. Levine, J.D. & Gordon, N.C. Influence of the method of drug administration on analgesic response. Nature 312, 755–756 (1984).

    Article  CAS  PubMed  Google Scholar 

  57. Gracely, R.H., Dubner, R., Wolskee, P.J. & Deeter, W.R. Placebo and naloxone can alter post-surgical pain by separate mechanisms. Nature 306, 264–265 (1983).

    Article  CAS  PubMed  Google Scholar 

  58. Benedetti, F. The opposite effects of the opiate antagonist naloxone and the cholecystokinin antagonist proglumide on placebo analgesia. Pain 64, 535–543 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Benedetti, F. & Amanzio, M. The neurobiology of placebo analgesia: from endogenous opioids to cholecystokinin. Prog. Neurobiol. 52, 109–125 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Benedetti, F., Amanzio, M. & Maggi, G. Potentiation of placebo analgesia by proglumide. Lancet 346, 1231 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Petrovic, P., Kalso, E., Petersson, K.M. & Ingvar, M. Placebo and opioid analgesia—imaging a shared neuronal network. Science 295, 1737–1740 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Wager, T.D. et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 303, 1162–1167 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Kong, J. et al. Brain activity associated with expectancy-enhanced placebo analgesia as measured by functional magnetic resonance imaging. J. Neurosci. 26, 381–388 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bingel, U., Lorenz, J., Schoell, E., Weiller, C. & Buchel, C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120, 8–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Zubieta, J.K. et al. Placebo effects mediated by endogenous opioid activity on μ-opioid receptors. J. Neurosci. 25, 7754–7762 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wager, T.D., Scott, D.J. & Zubieta, J.K. Placebo effects on human μ-opioid activity during pain. Proc. Natl. Acad. Sci. USA 104, 11056–11061 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Eippert, F. et al. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63, 533–543 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Zubieta, J.K., Yau, W.Y., Scott, D.J. & Stohler, C.S. Belief or need? Accounting for individual variations in the neurochemistry of the placebo effect. Brain Behav. Immun. 20, 15–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Scott, D.J. et al. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch. Gen. Psychiatry 65, 220–231 (2008).

    Article  PubMed  Google Scholar 

  70. Eippert, F., Finsterbusch, J., Bingel, U. & Buchel, C. Direct evidence for spinal cord involvement in placebo analgesia. Science 326, 404 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Wager, T.D., Matre, D. & Casey, K.L. Placebo effects in laser-evoked pain potentials. Brain Behav. Immun. 20, 219–230 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lorenz, J. et al. Cortical correlates of false expectations during pain intensity judgments–a possible manifestation of placebo/nocebo cognitions. Brain Behav. Immun. 19, 283–295 (2005).

    Article  PubMed  Google Scholar 

  73. Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol. 57, 87–115 (2006).

    Article  PubMed  Google Scholar 

  74. Kalivas, P.W., Churchill, L. & Romanides, A. Involvement of the pallidal-thalamocortical circuit in adaptive behavior. Ann. NY Acad. Sci. 877, 64–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. de la Fuente-Fernández, R. et al. Expectation and dopamine release: mechanism of the placebo effect in Parkinson′s disease. Science 293, 1164–1166 (2001).

    Article  PubMed  Google Scholar 

  76. Volkow, N.D. et al. Effects of expectation on the brain metabolic responses to methylphenidate and to its placebo in non-drug abusing subjects. Neuroimage 32, 1782–1792 (2006).

    Article  PubMed  Google Scholar 

  77. Mayberg, H.S. et al. The functional neuroanatomy of the placebo effect. Am. J. Psychiatry 159, 728–737 (2002).

    Article  PubMed  Google Scholar 

  78. Petrovic, P. et al. Placebo in emotional processing–induced expectations of anxiety relief activate a generalized modulatory network. Neuron 46, 957–969 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Scott, D.J. et al. Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 55, 325–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Schweinhardt, P., Seminowicz, D.A., Jaeger, E., Duncan, G.H. & Bushnell, M.C. The anatomy of the mesolimbic reward system: a link between personality and the placebo analgesic response. J. Neurosci. 29, 4882–4887 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Baliki, M.N., Geha, P.Y., Fields, H.L. & Apkarian, A.V. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 66, 149–160 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wasan, A.D., Kaptchuk, T.J., Davar, G. & Jamison, R.N. The association between psychopathology and placebo analgesia in patients with discogenic low back pain. Pain Med. 7, 217–228 (2006).

    Article  PubMed  Google Scholar 

  83. Geers, A.L., Helfer, S.G., Kosbab, K., Weiland, P.E. & Landry, S.J. Reconsidering the role of personality in placebo effects: dispositional optimism, situational expectations, and the placebo response. J. Psychosom. Res. 58, 121–127 (2005).

    Article  PubMed  Google Scholar 

  84. Gelfland, D.M., Gelfland, S. & Radin, M. Some personality factors associated with placebo responsivity. Psychol. Rep. 17, 555–562 (1965).

    Article  Google Scholar 

  85. Lieberman, M.D. et al. The neural correlates of placebo effects: a disruption account. Neuroimage 22, 447–455 (2004).

    Article  PubMed  Google Scholar 

  86. Price, D.D., Craggs, J., Verne, G.N., Perlstein, W.M. & Robinson, M.E. Placebo analgesia is accompanied by large reductions in pain-related brain activity in irritable bowel syndrome patients. Pain 127, 63–72 (2007).

    Article  PubMed  Google Scholar 

  87. Tracey, I. & Bushnell, C. How neuroimaging studies have challenged us to rethink: is chronic pain a disease?. J. Pain 10, 1113–1120 (2009).

    Article  PubMed  Google Scholar 

  88. May, A. Chronic pain may change the structure of the brain. Pain 137, 7–15 (2008).

    Article  PubMed  Google Scholar 

  89. Apkarian, A.V. et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J. Neurosci. 24, 10410–10415 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Seminowicz, D.A. et al. MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. Neuroimage 47, 1007–1014 (2009).

    Article  PubMed  Google Scholar 

  91. Metz, A.E., Yau, H.J., Centeno, M.V., Apkarian, A.V. & Martina, M. Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc. Natl. Acad. Sci. USA 106, 2423–2428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gündel, H. et al. Altered cerebral response to noxious heat stimulation in patients with somatoform pain disorder. Pain 137, 413–421 (2008).

    Article  PubMed  Google Scholar 

  93. Apkarian, A.V., Thomas, P.S., Krauss, B.R. & Szeverenyi, N.M. Prefrontal cortical hyperactivity in patients with sympathetically mediated chronic pain. Neurosci. Lett. 311, 193–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Jones, A.K., Watabe, H., Cunningham, V.J. & Jones, T. Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur. J. Pain 8, 479–485 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Harris, R.E. et al. Decreased central mu-opioid receptor availability in fibromyalgia. J. Neurosci. 27, 10000–10006 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wood, P.B. et al. Fibromyalgia patients show an abnormal dopamine response to pain. Eur. J. Neurosci. 25, 3576–3582 (2007).

    Article  PubMed  Google Scholar 

  97. Wood, P.B. et al. Reduced presynaptic dopamine activity in fibromyalgia syndrome demonstrated with positron emission tomography: a pilot study. J. Pain 8, 51–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Maarrawi, J. et al. Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain 127, 183–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Benedetti, F. et al. Loss of expectation-related mechanisms in Alzheimer′s disease makes analgesic therapies less effective. Pain 121, 133–144 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Pollo, A. & Benedetti, F. The placebo response: neurobiological and clinical issues of neurological relevance. Prog. Brain Res. 175, 283–294 (2009).

    Article  PubMed  Google Scholar 

  101. Waber, R.L., Shiv, B., Carmon, Z. & Ariely, D. Commercial features of placebo and therapeutic efficacy. J. Am. Med. Assoc. 299, 1016–1017 (2008).

    Article  CAS  Google Scholar 

  102. Leknes, S. & Tracey, I. A common neurobiology for pain and pleasure. Nat. Rev. Neurosci. 9, 314–320 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Tracey.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tracey, I. Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans. Nat Med 16, 1277–1283 (2010). https://doi.org/10.1038/nm.2229

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2229

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing