Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

E3 ubiquitin ligases as T cell anergy factors

Abstract

E3 ubiquitin ligases have emerged as key molecular regulators of immune cell function. Three families of proteins with ubiquitin ligase activity have been described (the HECT, RING and U-box proteins), and each may be involved in the regulation of immune responses during infection by targeting specific inhibitory molecules for proteolytic destruction. Several HECT and RING E3 proteins have now also been linked to the induction and maintenance of immune self-tolerance: c-Cbl, Cbl-b, GRAIL, Itch and Nedd4 each negatively regulate T cell growth factor production and proliferation. This review will discuss the relationship between the ubiquitination of select components of the antigen-sensing signaling apparatus in T cells and the development and maintenance of the clonal anergy state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain organization of E3 ubiquitin ligases linked to clonal anergy.
Figure 2: Increased activation threshold in anergic T cells by RING finger–type E3 ubiquitin ligases.
Figure 3: Premature dissolution of the immunological synapse by HECT-type E3 ubiquitin ligases in anergic T cells.

Similar content being viewed by others

References

  1. Schwartz, R.H. T cell anergy. Annu. Rev. Immunol. 21, 305–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Janeway, C.A., Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Mueller, D.L., Jenkins, M.K. & Schwartz, R.H. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu. Rev. Immunol. 7, 445–480 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Harding, F.A., McArthur, J.G., Gross, J.A., Raulet, D.H. & Allison, J.P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356, 607–609 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Jenkins, M.K. & Schwartz, R.H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med. 165, 302–319 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Quill, H. & Schwartz, R.H. Stimulation of normal inducer T cell clones with antigen presented by purified Ia molecules in planar lipid membranes: specific induction of a long-lived state of proliferative nonresponsiveness. J. Immunol. 138, 3704–3712 (1987).

    CAS  PubMed  Google Scholar 

  7. Kearney, E.R., Pape, K.A., Loh, D.Y. & Jenkins, M.K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Tanchot, C., Barber, D.L., Chiodetti, L. & Schwartz, R.H. Adaptive tolerance of CD4+ T cells in vivo: multiple thresholds in response to a constant level of antigen presentation. J. Immunol. 167, 2030–2009 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Perez, V.L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Vanasek, T.L., Khoruts, A., Zell, T. & Mueller, D.L. Antagonistic roles for CTLA-4 and the mammalian target of rapamycin in the regulation of clonal anergy: enhanced cell cycle progression promotes recall antigen responsiveness. J. Immunol. 167, 5636–5644 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Jenkins, M.K., Pardoll, D.M., Mizuguchi, J., Chused, T.M. & Schwartz, R.H. Molecular events in the induction of a nonresponsive state in interleukin 2-producing helper T-lymphocyte clones. Proc. Natl. Acad. Sci. USA 84, 5409–5413 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jain, J. et al. The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature 365, 352–355 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719–731 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Telander, D.G., Malvey, E.-N. & Mueller, D.L. Evidence for repression of interleukin 2 gene activation in anergic T cells. J. Immunol. 162, 1460–1465 (1999).

    CAS  PubMed  Google Scholar 

  15. Bhandoola, A. et al. Reduced CD3-mediated protein tyrosine phosphorylation in anergic CD4+ and CD8+ T cells. J. Immunol. 151, 2355–2367 (1993).

    CAS  PubMed  Google Scholar 

  16. Gajewski, T.F., Qian, D., Fields, P. & Fitch, F.W. Anergic T-lymphocyte clones have altered inositol phosphate, calcium, and tyrosine kinase signaling pathways. Proc. Natl. Acad. Sci. USA 91, 38–42 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mondino, A. et al. Defective transcription of the IL-2 gene is associated with impaired expression of c-Fos, FosB, and JunB in anergic T helper 1 cells. J. Immunol. 157, 2048–2057 (1996).

    CAS  PubMed  Google Scholar 

  18. Li, W., Whaley, C.D., Mondino, A. & Mueller, D.L. Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+ T cells. Science 271, 1272–1276 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Fields, P.E., Gajewski, T.F. & Fitch, F.W. Blocked Ras activation in anergic CD4+ T cells. Science 271, 1276–1278 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. DeSilva, D.R., Feeser, W.S., Tancula, E.J. & Scherle, P.A. Anergic T cells are defective in both Jun NH2-terminal kinase and mitogen-activated protein kinase signaling pathways. J. Exp. Med. 183, 2017–2023 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Kang, S.-M. et al. Transactivation by AP-1 is a molecular target of T cell clonal anergy. Science 257, 1134–1138 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Beverly, B., Kang, S.M., Lenardo, M.J. & Schwartz, R.H. Reversal of in vitro T cell clonal anergy by IL-2 stimulation. Int. Immunol. 4, 661–671 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. DeSilva, D.R., Urdahl, K.B. & Jenkins, M.K. Clonal anergy is induced in vitro by T cell receptor occupancy in the absence of proliferation. J. Immunol. 147, 3261–3267 (1991).

    CAS  PubMed  Google Scholar 

  24. Pape, K.A., Merica, R., Mondino, A., Khoruts, A. & Jenkins, M.K. Direct evidence that functionally impaired CD4+ T cells persist in vivo following induction of peripheral tolerance. J. Immunol. 160, 4719–4729 (1998).

    CAS  PubMed  Google Scholar 

  25. Powell, J.D., Lerner, C.G. & Schwartz, R.H. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J. Immunol. 162, 2775–2784 (1999).

    CAS  PubMed  Google Scholar 

  26. Weissman, A.M. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell. Biol. 2, 169–178 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Thrower, J.S., Hoffman, L., Rechsteiner, M. & Pickart, C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haglund, K. et al. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat. Cell Biol. 5, 461–466 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. VanDemark, A.P. & Hill, C.P. Structural basis of ubiquitylation. Curr. Opin. Struct. Biol. 12, 822–830 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Yaron, A. et al. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396, 590–594 (1998).

    CAS  PubMed  Google Scholar 

  31. Hatakeyama, S. et al. Ubiquitin-dependent degradation of IκBα is mediated by a ubiquitin ligase Skp1/Cul 1/F-box protein FWD1. Proc. Natl. Acad. Sci. USA 96, 3859–3863 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spencer, E., Jiang, J. & Chen, Z.J. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev. 13, 284–294 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Winston, J.T. et al. The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and beta-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13, 270–283 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leulier, F. et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol. 4, 478–484 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Leulier, F. et al. Directed expression of the HIV-1 accessory protein Vpu in Drosophila fat-body cells inhibits Toll-dependent immune responses. EMBO Rep. 4, 976–981 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rutschmann, S. et al. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12, 569–580 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Ryals, J. et al. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor IκB. Plant Cell 9, 425–439 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, Y., Schiff, M., Serino, G., Deng, X.W. & Dinesh-Kumar, S.P. Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to Tobacco mosaic virus. Plant Cell 14, 1483–1496 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, Y., Schiff, M., Marathe, R. & Dinesh-Kumar, S.P. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30, 415–429 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Langdon, W.Y., Hartley, J.W., Klinken, S.P., Ruscetti, S.K. & Morse, H.C., 3rd. v-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas. Proc. Natl. Acad. Sci. USA 86, 1168–1172 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blake, T.J., Shapiro, M., Morse, H.C., 3rd & Langdon, W.Y. The sequences of the human and mouse c-cbl proto-oncogenes show v-cbl was generated by a large truncation encompassing a proline-rich domain and a leucine zipper-like motif. Oncogene 6, 653–657 (1991).

    CAS  PubMed  Google Scholar 

  42. Boussiotis, V.A., Freeman, G.J., Berezovskaya, A., Barber, D.L. & Nadler, L.M. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 278, 124–128 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Dillon, T.J. et al. Ectopic B-Raf expression enhances extracellular signal-regulated kinase (ERK) signaling in T cells and prevents antigen-presenting cell-induced anergy. J. Biol. Chem. 278, 35940–35949 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Sebzda, E., Bracke, M., Tugal, T., Hogg, N. & Cantrell, D.A. Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nat. Immunol. 3, 251–258 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Joazeiro, C.A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, H.Y. et al. Cbl promotes ubiquitination of the T cell receptor ζ through an adaptor function of Zap-70. J. Biol. Chem. 276, 26004–26011 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Naramura, M. et al. c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat. Immunol. 3, 1192–1199 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Murphy, M.A. et al. Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol. Cell. Biol. 18, 4872–4782 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Naramura, M., Kole, H.K., Hu, R.J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl. Acad. Sci. USA 95, 15547–15552 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shao, Y., Elly, C. & Liu, Y.C. Negative regulation of Rap1 activation by the Cbl E3 ubiquitin ligase. EMBO Rep. 4, 425–431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Heissmeyer, V. et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat. Immunol. 5, 255–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, J. et al. Cutting edge: regulation of T cell activation threshold by CD28 costimulation through targeting Cbl-b for ubiquitination. J. Immunol. 169, 2236–2240 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, W. et al. Negative regulation of T cell antigen receptor-mediated Crk-L-C3G signaling and cell adhesion by Cbl-b. J. Biol. Chem. 278, 23978–23983 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Chiang, Y.J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Fang, D. & Liu, Y.C. Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nat. Immunol. 2, 870–875 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Yokoi, N. et al. Cblb is a major susceptibility gene for rat type 1 diabetes mellitus. Nat. Genet. 31, 391–394 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Anandasabapathy, N. et al. GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity 18, 535–547 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Soares, L. et al. Two isoforms of otubain 1 regulate T cell anergy via GRAIL. Nat. Immunol. 5, 45–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Borchers, A.G. et al. The E3 ubiquitin ligase GREUL1 anteriorizes ectoderm during Xenopus development. Dev. Biol. 251, 395–408 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Angers, A., Ramjaun, A.R. & McPherson, P.S. The HECT domain ligase Itch ubiquitinates endophilin and localizes to the trans-Golgi network and endosomal system. J. Biol. Chem. 279, 11471–11479 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Qiu, L. et al. Recognition and ubiquitination of Notch by Itch, a hect-type E3 ubiquitin ligase. J. Biol. Chem. 275, 35734–35737 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Fang, D. et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat. Immunol. 3, 281–287 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Imhof, M.O. & McDonnell, D.P. Yeast RSP5 and its human homolog hRPF1 potentiate hormone-dependent activation of transcription by human progesterone and glucocorticoid receptors. Mol. Cell. Biol. 16, 2594–2605 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Staub, O. et al. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J. 16, 6325–6336 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu, P.J., Zhou, X.Z., Shen, M. & Lu, K.P. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283, 1325–1328 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Magnifico, A. et al. WW domain HECT E3s target Cbl RING finger E3s for proteasomal degradation. J. Biol. Chem. 278, 43169–43177 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Marchler-Bauer, A. et al. CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res. 31, 383–387 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Geer, L.Y., Domrachev, M., Lipman, D.J. & Bryant, S.H. CDART: protein homology by domain architecture. Genome Res. 12, 1619–1623 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank R. Zhang and M. Jenkins for a critical reading of the manuscript and comments. Supported by National Institutes of Health (RO1 GM54706, PO1 AI35296 and PO1 AI50162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L Mueller.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, D. E3 ubiquitin ligases as T cell anergy factors. Nat Immunol 5, 883–890 (2004). https://doi.org/10.1038/ni1106

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing