Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hypoxia-inducible factor–dependent induction of netrin-1 dampens inflammation caused by hypoxia

A Corrigendum to this article was published on 21 April 2015

This article has been updated

Abstract

The neuronal guidance molecule netrin-1 is linked to the coordination of inflammatory responses. Given that mucosal surfaces are particularly prone to hypoxia-elicited inflammation, we sought to determine the function of netrin-1 in hypoxia-induced inflammation. We detected hypoxia-inducible factor 1α (HIF-1α)-dependent induction of expression of the gene encoding netrin-1 (Ntn1) in hypoxic epithelia. Neutrophil transepithelial migration studies showed that by engaging A2B adenosine receptor (A2BAR) on neutrophils, netrin-1 attenuated neutrophil transmigration. Exogenous netrin-1 suppressed hypoxia-elicited inflammation in wild-type but not in A2BAR-deficient mice, and inflammatory hypoxia was enhanced in Ntn1+/− mice relative to that in Ntn1+/+ mice. Our studies demonstrate that HIF-1α-dependent induction of netrin-1 attenuates hypoxia-elicited inflammation at mucosal surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of netrin-1 by hypoxia.
Figure 2: Influence of hypoxia on the NTN1 promoter.
Figure 3: Effect of netrin-1 on transepithelial PMN migration.
Figure 4: Netrin-1 in an A2BAR signaling model.
Figure 5: Effect of exogenous netrin-1 on inflammatory hypoxia in vivo.
Figure 6: Effect of endogenous netrin-1 on inflammatory hypoxia in vivo.

Similar content being viewed by others

Change history

  • 27 February 2015

    In the version of this article initially published, the contrast in lane 4 of Figure 2c had been altered, and the top right image in Figure 5a and bottom right image Figure 6e were incorrect. The correct gel and images are now presented. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Sitkovsky, M. & Lukashev, D. Regulation of immune cells by local-tissue oxygen tension: HIF1α and adenosine receptors. Nat. Rev. Immunol. 5, 712–721 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Sitkovsky, M.V. et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu. Rev. Immunol. 22, 657–682 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Cummins, E.P. et al. Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity. Proc. Natl. Acad. Sci. USA 103, 18154–18159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Walmsley, S.R. et al. Hypoxia-induced neutrophil survival is mediated by HIF-1α-dependent NF-κB activity. J. Exp. Med. 201, 105–115 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rius, J. et al. NF-(B links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453, 807–811 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eckle, T. et al. A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood 111, 2024–2035 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eltzschig, H.K. et al. HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J. Exp. Med. 202, 1493–1505 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eltzschig, H.K. et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J. Exp. Med. 198, 783–796 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eltzschig, H.K. et al. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104, 3986–3992 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Morote-Garcia, J.C., Rosenberger, P., Kuhlicke, J. & Eltzschig, H.K. HIF-1-dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak. Blood 111, 5571–5580 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Synnestvedt, K. et al. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Invest. 110, 993–1002 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Perrot, M. et al. Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. Am. J. Respir. Crit. Care Med. 165, 211–215 (2002).

    Article  PubMed  Google Scholar 

  13. Naka, Y., Toda, K., Kayano, K., Oz, M.C. & Pinsky, D.J. Failure to express the P-selectin gene or P-selectin blockade confers early pulmonary protection after lung ischemia or transplantation. Proc. Natl. Acad. Sci. USA 94, 757–761 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, Z. et al. Infarct-sparing effect of A2A-adenosine receptor activation is due primarily to its action on lymphocytes. Circulation 111, 2190–2197 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Eckle, T., Kohler, D., Lehmann, R., El Kasmi, K.C. & Eltzschig, H.K. Hypoxia-inducible factor-1 Is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation 118, 166–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Eckle, T. et al. Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115, 1581–1590 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Kohler, D. et al. CD39/ectonucleoside triphosphate diphosphohydrolase 1 provides myocardial protection during cardiac ischemia/reperfusion injury. Circulation 116, 1784–1794 (2007).

    Article  PubMed  Google Scholar 

  18. Grenz, A. et al. The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med. 5, e137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hart, M.L. et al. Extracellular adenosine production by ecto-5′-nucleotidase protects during murine hepatic ischemic preconditioning. Gastroenterology 135, 1739–1750 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Guckelberger, O. et al. Beneficial effects of CD39/ecto-nucleoside triphosphate diphosphohydrolase-1 in murine intestinal ischemia-reperfusion injury. Thromb. Haemost. 91, 576–586 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Hart, M.L. et al. Role of extracellular nucleotide phosphohydrolysis in intestinal ischemia-reperfusion injury. FASEB J. 22, 2784–2797 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karhausen, J., Ibla, J.C. & Colgan, S.P. Implications of hypoxia on mucosal barrier function. Cell Mol Bio 49, 77–87 (2003).

    CAS  Google Scholar 

  23. Fredholm, B.B. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ. 14, 1315–1323 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Weissmuller, T. et al. PMNs facilitate translocation of platelets across human and mouse epithelium and together alter fluid homeostasis via epithelial cell-expressed ecto-NTPDases. J. Clin. Invest. 118, 3682–3692 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cramer, T. et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karhausen, J. et al. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest. 114, 1098–1106 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Robinson, A. et al. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134, 145–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Peyssonnaux, C. et al. HIF-1α expression regulates the bactericidal capacity of phagocytes. J. Clin. Invest. 115, 1806–1815 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cummins, E.P. et al. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134, 156–165 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Kempf, V.A. et al. Activation of hypoxia-inducible factor-1 in bacillary angiomatosis: evidence for a role of hypoxia-inducible factor-1 in bacterial infections. Circulation 111, 1054–1062 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Ly, N.P. et al. Netrin-1 inhibits leukocyte migration in vitro and in vivo. Proc. Natl. Acad. Sci. USA 102, 14729–14734 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dickson, B.J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Tessier-Lavigne, M. & Goodman, C.S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Chedotal, A., Kerjan, G. & Moreau-Fauvarque, C. The brain within the tumor: new roles for axon guidance molecules in cancers. Cell Death Differ. 12, 1044–1056 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Yamashita, R. et al. DBTSS: DataBase of human transcription start sites, progress report 2006. Nucleic Acids Res. 34, D86–D89 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Wenger, R.H., Stiehl, D.P. & Camenisch, G. Integration of oxygen signaling at the consensus HRE. Sci. STKE 2005, re12 (2005).

    PubMed  Google Scholar 

  37. Chin, A.C. & Parkos, C.A. Pathobiology of neutrophil transepithelial migration: implications in mediating epithelial injury. Annu Rev Pathol 2, 111–143 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Corset, V. et al. Netrin-1-mediated axon outgrowth and cAMP production requires interaction with adenosine A2b receptor. Nature 407, 747–750 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Ledent, C. et al. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388, 674–678 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Yang, D. et al. The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J. Clin. Invest. 116, 1913–1923 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moore, S.W., Tessier-Lavigne, M. & Kennedy, T.E. Netrins and their receptors. Adv. Exp. Med. Biol. 621, 17–31 (2007).

    Article  PubMed  Google Scholar 

  42. Komatsuzaki, K., Dalvin, S. & Kinane, T.B. Modulation of Giα2 signaling by the axonal guidance molecule UNC5H2. Biochem. Biophys. Res. Commun. 297, 898–905 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Kong, T., Westerman, K.A., Faigle, M., Eltzschig, H.K. & Colgan, S.P. HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J. 20, 2242–2250 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Eltzschig, H.K. et al. Endothelial catabolism of extracellular adenosine during hypoxia: the role of surface adenosine deaminase and CD26. Blood 108, 1602–1610 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Thiel, M. et al. Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury. PLoS Biol. 3, e174 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kojima, H. et al. Abnormal B lymphocyte development and autoimmunity in hypoxia-inducible factor 1α-deficient chimeric mice. Proc. Natl. Acad. Sci. USA 99, 2170–2174 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stein, E., Zou, Y., Poo, M. & Tessier-Lavigne, M. Binding of DCC by netrin-1 to mediate axon guidance independent of adenosine A2B receptor activation. Science 291, 1976–1982 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. McKenna, W.L. et al. Netrin-1-independent adenosine A2b receptor activation regulates the response of axons to netrin-1 by controlling cell surface levels of UNC5A receptors. J. Neurochem. 104, 1081–1090 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Eckle, T., Grenz, A., Laucher, S. & Eltzschig, H.K. A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice. J. Clin. Invest. 118, 3301–3315 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Faigle, D. Köhler and S. Laucher for technical support; Bayer Healthcare for BAY 60-6583; and S.P. Colgan (University of Colorado Denver), M. Tessier-Lavigne (Genentech) and C. Ledent (Université Libre de Bruxelles) for breeding pairs of gene-targeted mice. Supported by the University of Tübingen (Fortüne grants 1639-0-0 to P.R. and 1778-0-0 to V.M.), Deutsche Forschungsgemeinschaft (EL 274/2-1 to H.K.E., and EL 274/2-1 and RO 3671/2-1 to P.R.) and the Foundation for Anesthesia Education and Research (H.K.E.).

Author information

Authors and Affiliations

Authors

Contributions

P.R. did most in vitro and all in vivo experiments, analyzed and interpreted the data, and wrote parts of the manuscript; J.M.S. provided the initial idea, helped with the design of the research and interpretation of data; V.M. helped with in vivo studies and data analysis; E.M. did part of the in vitro studies; A.M. studied cAMP responses elicited by netrin-1; J.C.M.-G. helped with in vivo studies; K.U. helped with data interpretation, reviewed the manuscript and helped with writing; and H.K.E. designed the research and wrote the manuscript.

Note: Supplementary information is available on the Nature Immunology website.

Corresponding author

Correspondence to Holger K Eltzschig.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Tables 1–4 and Supplementary Methods (PDF 434 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberger, P., Schwab, J., Mirakaj, V. et al. Hypoxia-inducible factor–dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol 10, 195–202 (2009). https://doi.org/10.1038/ni.1683

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1683

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing