Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity

Abstract

Autoimmune diseases are thought to result from imbalances in normal immune physiology and regulation. Here, we show that autoimmune disease susceptibility and resistance alleles on mouse chromosome 3 (Idd3) correlate with differential expression of the key immunoregulatory cytokine interleukin-2 (IL-2). In order to test directly that an approximately twofold reduction in IL-2 underpins the Idd3-linked destabilization of immune homeostasis, we show that engineered haplodeficiency of Il2 gene expression not only reduces T cell IL-2 production by twofold but also mimics the autoimmune dysregulatory effects of the naturally occurring susceptibility alleles of Il2. Reduced IL-2 production achieved by either genetic mechanism correlates with reduced function of CD4+ CD25+ regulatory T cells, which are critical for maintaining immune homeostasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequency of diabetes in Idd3-congenic NOD strains.
Figure 2: Correlation of Idd3-linked disease susceptibility and resistance with Il2 expression.
Figure 3: Development and function of IGRP206–214-reactive CD8+ T cells in the presence or absence of the B6 Idd3 region.
Figure 4: IL-2 production competency and diabetes susceptibility of Il2-hemizygous mice.
Figure 5: Enhanced effector function of 8.3-CD8+ CTL in 8.3-NOD.Idd3B6/B6 mice.
Figure 6: Enhanced function of CD4+ CD25+ Treg cells in 8.3-NOD.Idd3B6/B6 mice.
Figure 7: Enhanced function of CD4+ CD25+ Treg cells in 8.3-NOD.Idd3B6/NOD mice is dependent on IL-2 production.

Similar content being viewed by others

References

  1. Smyth et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (1F1H1) region. Nat. Genet. 38, 617–619 (2006).

    Article  CAS  Google Scholar 

  2. Wicker, L. et al. Resistance alleles at two non-major histocompatibility complex-linked insulin-dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect nonobese diabetic mice from diabetes. J. Exp. Med. 180, 1705–1713 (1994).

    Article  CAS  Google Scholar 

  3. Lyons, P.A. et al. Congenic mapping of the type 1 diabetes locus, Idd3, to a 780-kb region of mouse chromosome 3: identification of a candidate segment of ancestral DNA by haplotype mapping. Genome Res. 10, 446–453 (2000).

    Article  CAS  Google Scholar 

  4. Encinas, J. et al. QTL influencing autoimmune diabetes and encephalomyelitis map to a 0.15-cM region containing Il2. Nat. Genet. 21, 158–160 (1999).

    Article  CAS  Google Scholar 

  5. Teuscher, C., Wardell, B., Lunceford, J., Michael, S. & Tung, K. Aod2, the locus controlling development of atrophy in neonatal thymectomy-induced autoimmune ovarian dysgenesis, co-localizes with Il2, Fgfb and Idd3. J. Exp. Med. 183, 631–637 (1996).

    Article  CAS  Google Scholar 

  6. Samy, E., Parker, L., Sharp, C. & Tung, K. Continuous control of autoimmune disease by antigen-dependent polyclonal CD4+CD25+ regulatory T-cells in the regional lymph node. J. Exp. Med. 202, 771–781 (2005).

    Article  CAS  Google Scholar 

  7. Podolin, P.L. et al. Differential glycosylation of interleukin 2, the molecular basis for the NOD Idd3 type 1 diabetes gene? Cytokine 12, 477–482 (2000).

    Article  CAS  Google Scholar 

  8. King, C., Ilic, A., Koelsch, K. & Sarvetnick, N. Homeostatic expansion of T-cells during immune insufficiency generates autoimmunity. Cell 117, 265–277 (2004).

    Article  CAS  Google Scholar 

  9. Cervino, A. et al. A comprehensive mouse IBD database for the efficient localization of quantitative trait loci. Mamm. Genome 17, 565–574 (2006).

    Article  CAS  Google Scholar 

  10. McAleer, M.A. et al. Crosses of NOD mice with the related NON strain. A polygenic model for IDDM. Diabetes 44, 1186–1195 (1995).

    Article  CAS  Google Scholar 

  11. Yui, M.A., Hernandez-Hoyos, G. & Rothenberg, E.V. A new regulatory region of the IL-2 locus that confers position-independent transgene expression. J. Immunol. 166, 1730–1739 (2001).

    Article  CAS  Google Scholar 

  12. Verdaguer, J. et al. Spontaneous autoimmune diabetes in monoclonal T-cell nonobese diabetic mice. J. Exp. Med. 186, 1663–1676 (1997).

    Article  CAS  Google Scholar 

  13. Verdaguer, J. et al. Acceleration of spontaneous diabetes in TCR-β-transgenic nonobese diabetic mice by β-cell cytotoxic CD8+ T-cells expressing identical endogenous TCR-α chains. J. Immunol. 157, 4726–4735 (1996).

    CAS  PubMed  Google Scholar 

  14. DiLorenzo, T. et al. MHC class I-restricted T-cells are required for all but end stages of diabetes development and utilize a prevalent T-cell receptor α chain gene rearrangement. Proc. Natl. Acad. Sci. USA 95, 12538–12542 (1998).

    Article  CAS  Google Scholar 

  15. Anderson, B., Park, B.J., Verdaguer, J., Amrani, A. & Santamaria, P. Prevalent CD8+ T-cell response against one peptide/MHC complex in autoimmune diabetes. Proc. Natl. Acad. Sci. USA 96, 9311–9316 (1999).

    Article  CAS  Google Scholar 

  16. Amrani, A. et al. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 406, 739–742 (2000).

    Article  CAS  Google Scholar 

  17. Lieberman, S. et al. Identity of the antigen targeted by prevalent pathogenic T-cells in diabetes. Proc. Natl. Acad. Sci. USA 100, 8384–8388 (2003).

    Article  CAS  Google Scholar 

  18. Trudeau, J.D. et al. Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T-cells in peripheral blood. J. Clin. Invest. 111, 217–223 (2003).

    Article  CAS  Google Scholar 

  19. Arron, J. et al. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441, 595–600 (2006).

    Article  CAS  Google Scholar 

  20. Schorle, H., Holtsche, T., Honig, T., Schimpl, A. & Horak, I. Development and function of T-cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352, 621–623 (1991).

    Article  CAS  Google Scholar 

  21. Amrani, A. et al. CD154-dependent priming of diabetogenic CD4+ T-cells dissociated from activation of antigen-presenting cells. Immunity 16, 719–732 (2002).

    Article  CAS  Google Scholar 

  22. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+CD4+ regulatory T-cells: their common role in controlling autoimmunity, tumor immunity and transplantation tolerance. Immunol. Rev. 182, 18–32 (2001).

    Article  CAS  Google Scholar 

  23. Serra, P. et al. CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T-cells. Immunity 19, 877–889 (2003).

    Article  CAS  Google Scholar 

  24. Zhang, Y. et al. In situ β-cell death promotes priming of diabetogenic CD8 T lymphocytes. J. Immunol. 168, 1466–1472 (2002).

    Article  CAS  Google Scholar 

  25. Furtado, G.C., Curotto de Lafaille, M.A., Kutchukhidze, N. & Lafaille, J.J. Interleukin 2 signaling is required for CD4+ regulatory T-cell function. J. Exp. Med. 196, 851–857 (2002).

    Article  CAS  Google Scholar 

  26. Setoguchi, R., Hori, S., Takahashi, T. & Sakaguchi, S. Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T-cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 201, 723–735 (2005).

    Article  CAS  Google Scholar 

  27. Tang, Q. et al. Visualizing regulatory T-cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 7, 83–92 (2006).

    Article  CAS  Google Scholar 

  28. Saparov, A. et al. Interleukin-2 expression by a subpopulation of primary T-cells is linked to enhanced memory/effector function. Immunity 11, 271–280 (1999).

    Article  CAS  Google Scholar 

  29. Williams, M., Tyznik, A. & Bevan, M. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T-cells. Nature 441, 890–893 (2006).

    Article  CAS  Google Scholar 

  30. Wang, L., Kametani, Y., Katano, I. & Habu, S. T-cell specific enhancement of histone H3 acetylation in 5′ flanking region of the IL-2 gene. Biochem. Biophys. Res. Commun. 331, 589–594 (2005).

    Article  CAS  Google Scholar 

  31. Adachi, A. & Rothenberg, E. Cell-type-specific epigenetic marking of the IL2 gene at a distal cis-regulatory region in competent, nontranscribing T-cells. Nucleic Acids Res. 33, 3200–3210 (2005).

    Article  CAS  Google Scholar 

  32. Hurez, V. et al. Restricted clonal expression of IL-2 by naive T-cells reflects differential dynamic interactions with dendritic cells. J. Exp. Med. 198, 123–132 (2003).

    Article  CAS  Google Scholar 

  33. Vella, A. et al. Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am. J. Hum. Genet. 76, 773–779 (2005).

    Article  CAS  Google Scholar 

  34. Wolf, M., Schimpl, A. & Hunig, T. Control of T-cell hyperactivation in IL-2-deficient mice by CD4+CD25- and CD4+CD25+ T-cells: evidence for two distinct regulatory mechanisms. Eur. J. Immunol. 31, 1637–1645 (2001).

    Article  CAS  Google Scholar 

  35. Almeida, A.R., Legrand, N., Papiernik, M. & Freitas, A.A. Homeostasis of peripheral CD4+ T-cells: IL-2Rα and IL-2 shape a population of regulatory cells that controls CD4+ T-cell numbers. J. Immunol. 169, 4850–4860 (2002).

    Article  Google Scholar 

  36. Malek, T.R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T-cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17, 167–178 (2002).

    Article  CAS  Google Scholar 

  37. Thornton, A.M., Donovan, E.E., Piccirillo, C.A. & Shevach, E.M. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T-cell suppressor function. J. Immunol. 172, 6519–6523 (2004).

    Article  CAS  Google Scholar 

  38. de la Rosa, M., Rutz, S., Dorninger, H. & Scheffold, A. Interleukin-2 is essential for CD4+CD25+ regulatory T-cell function. Eur. J. Immunol. 34, 2480–2488 (2004).

    Article  CAS  Google Scholar 

  39. Bayer, A.L., Yu, A., Adeegbe, D. & Malek, T.R. Essential role for interleukin-2 for CD4+CD25+ T regulatory cell development during the neonatal period. J. Exp. Med. 201, 769–777 (2005).

    Article  CAS  Google Scholar 

  40. Sadlack, B. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253–261 (1993).

    Article  CAS  Google Scholar 

  41. Willerford, D.M. et al. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3, 521–530 (1995).

    Article  CAS  Google Scholar 

  42. Suzuki, H., Duncan, G.S., Takimoto, H. & Mak, T.W. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain. J. Exp. Med. 185, 499–505 (1997).

    Article  CAS  Google Scholar 

  43. Sharfe, N., Dadi, H., Shahar, M. & Roifman, C. Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc. Natl. Acad. Sci. USA 94, 3168–3171 (1997).

    Article  CAS  Google Scholar 

  44. Kukreja, A. et al. Multiple immuno-regulatory defects in type-1 diabetes. J. Clin. Invest. 109, 131–140 (2002).

    Article  CAS  Google Scholar 

  45. Lindley, S. et al. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes 54, 92–99 (2005).

    Article  CAS  Google Scholar 

  46. Brusko, T., Wasserfall, C., Clare-Salzler, M., Schatz, D. & Atkinson, M. Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes 54, 1407–1414 (2005).

    Article  CAS  Google Scholar 

  47. Lord, C. et al. Mapping the diabetes polygene Idd3 on mouse chromosome 3 by use of novel congenic strains. Mamm. Genome 6, 563–570 (1995).

    Article  CAS  Google Scholar 

  48. Ning, Z., Cox, A. & Mullikin, J. SSAHA: a fast search method for large DNA databases. Genome Res. 11, 1725–1729 (2001).

    Article  CAS  Google Scholar 

  49. Smink, L. et al. T1DBase, a community web-based resource for type 1 diabetes research. Nucleic Acids Res. 33, D544–D549 (2005).

    Article  CAS  Google Scholar 

  50. Kim, H., Korn, L., Gamero, A. & Leonard, W. Calcium-dependent activation of interleukin-21 gene expression in T-cells. J. Biol. Chem. 280, 25291–25297 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Bou, M. Deuma, S. Thiessen and H. Vandermeer for technical assistance with mouse breeding, genotyping and animal care; L. Kennedy and L. Robertson for flow cytometry and A. Shameli, P. Taylor, S. Tsai, U. Walter and Y. Yang for reading the manuscript. NOD.B6 Idd3 and NOD.CZECH Idd3 are available from Taconic through the Emerging Models Program (Lines 1098 and 1590, respectively). This work was supported by grants from the Canadian Institutes of Health Research, the Juvenile Diabetes Research Foundation (JDRF) and the Wellcome Trust. J.Y. was supported by fellowships from the Canadian Diabetes Association and JDRF. L.S.W. and J.A.T. are supported by grants from the JDRF and the Wellcome Trust, and L.S.W. is a JDRF/Wellcome Trust Principal Research Fellow. P. Serra was supported by a studentship from the Alberta Heritage Foundation for Medical Research (AHFMR). P. Santamaria is a Scientist of AHFMR. The JMDRC is supported by the Diabetes Association (Foothills). The availability of NOD congenic mice through the Taconic Farms Emerging Models Program has been supported by grants from the Merck Genome Research Institute, National Institute of Allergy and Infectious Diseases and the JDRF. Requests for materials should be addressed to P. Santamaria (psantama@ucalgary.ca) or L.S.W. (linda.wicker@cimr.cam.ac.uk).

Author information

Authors and Affiliations

Authors

Contributions

J.Y. and P. Santamaria conceived and designed the immunological experiments with transgenic and nontransgenic mice. L.W., J.T. and L.P. conceived and designed the genetic experiments. J.Y., P. Santamaria, L.W. and J.T. wrote the paper. J.Y. and P. Serra carried out the experiments shown in Figures 3a,b, 4,5,6,7 and Supplementary Figures 4,5,6,7. D.R., V.G., S.G., J.R., B.H., L.S. and L.W. did the sequencing and bioinformatic analyses of Idd3 shown in Supplementary Figure 1. S.H., D.R., K.H., V.G., R.R., A.M.C., J.C. and P.L. genotyped the congenic strains and/or generated the RT qPCR data shown in Fig. 2 and 3 and Supplementary Figures 2 and 3. R.C., S.-L.C., P.L., A.G.-M., R.V., L.P. and L.W. produced and monitored the nontransgenic congenic strains described in the paper to generate the survival curves shown in Fig. 1 and the T1D-gene/SNP associations shown in Supplementary Figure 1. D.S. produced the NOD.Il2+/− strain.

Corresponding authors

Correspondence to Linda S Wicker or Pere Santamaria.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The Idd3 region of mouse chromosome 3 and sequence coverage track and location of disease-associated SNPs in Il2 and Il21. (PDF 1631 kb)

Supplementary Fig. 2

Correlation of disease susceptibility and resistance with Il2 expression in thymocytes. (PDF 116 kb)

Supplementary Fig. 3

Preferential production of IL-2 pre-mRNA from the resistant Il2 allele occurs in both CD4+ and CD8+ T cells and is a cis-regulated genetic event. (PDF 231 kb)

Supplementary Fig. 4

Phenotype and function of 8.3-CD8+ T cells in the presence or absence of the B6 Idd3 region. (PDF 419 kb)

Supplementary Fig. 5

5 IL-2 production competency as determined by intracellular IL-2 staining. (PDF 531 kb)

Supplementary Fig. 6

Enhanced development and function of CD4+ CD25+ Tregs in nontransgenic NOD.Idd3B6/B6 and B10.BR mice. (PDF 285 kb)

Supplementary Fig. 7

Phenotype and function of CD4+ CD25+ T cells from NOD and NOD.Idd3B6/B6 mice. (PDF 418 kb)

Supplementary Table 1

Primer sequences. (PDF 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamanouchi, J., Rainbow, D., Serra, P. et al. Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 39, 329–337 (2007). https://doi.org/10.1038/ng1958

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1958

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing