Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Revealing the vectors of cellular identity with single-cell genomics

Abstract

Single-cell genomics has now made it possible to create a comprehensive atlas of human cells. At the same time, it has reopened definitions of a cell's identity and of the ways in which identity is regulated by the cell's molecular circuitry. Emerging computational analysis methods, especially in single-cell RNA sequencing (scRNA-seq), have already begun to reveal, in a data-driven way, the diverse simultaneous facets of a cell's identity, from discrete cell types to continuous dynamic transitions and spatial locations. These developments will eventually allow a cell to be represented as a superposition of 'basis vectors', each determining a different (but possibly dependent) aspect of cellular organization and function. However, computational methods must also overcome considerable challenges—from handling technical noise and data scale to forming new abstractions of biology. As the scale of single-cell experiments continues to increase, new computational approaches will be essential for constructing and characterizing a reference map of cell identities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diverse factors combine to create a cell's unique identity, and computational methods reveal them.
Figure 2: Biological and technical factors combine to determine the measured genomic profiles of single cells; computational methods remove technical effects and tease apart facets of the biological variation.
Figure 3: Technical confounders of single-cell RNA-seq and computational methods to handle them.

Similar content being viewed by others

References

  1. Gaublomme, J.T. et al. Single-cell genomics unveils critical regulators of Th17 Cell pathogenicity. Cell 163, 1400–1412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shalek, A.K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shalek, A.K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Grün, D. et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525, 251–255 (2015).

    Article  PubMed  CAS  Google Scholar 

  6. Altschuler, S.J. & Wu, L.F. Cellular heterogeneity: do differences make a difference? Cell 141, 559–563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Reports 2, 666–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zong, C., Lu, S., Chapman, A.R. & Xie, X.S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148, 886–895 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hou, Y. et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148, 873–885 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leung, M.L., Wang, Y., Waters, J. & Navin, N.E. SNES: single nucleus exome sequencing. Genome Biol. 16, 55 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lohr, J.G. et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat. Biotechnol. 32, 479–484 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bandura, D.R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Bendall, S.C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chattopadhyay, P.K. et al. Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat. Med. 12, 972–977 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 30, 858–867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo, H. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23, 2126–2135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smallwood, S.A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Farlik, M. et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Reports 10, 1386–1397 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Guo, H. et al. The DNA methylation landscape of human early embryos. Nature 511, 606–610 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cusanovich, D.A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Buenrostro, J.D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Macosko, E.Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klein, A.M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krishnaswamy, S. et al. Systems biology. Conditional density-based analysis of T cell signaling in single-cell data. Science 346, 1250689 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sen, N. et al. Single-cell mass cytometry analysis of human tonsil T cell remodeling by varicella zoster virus. Cell Reports 8, 633–645 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Levine, J.H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gawad, C., Koh, W. & Quake, S.R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, J.K., Kolodziejczyk, A.A., Ilicic, T., Teichmann, S.A. & Marioni, J.C. Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat. Commun. 6, 8687 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kolodziejczyk, A.A., Kim, J.K., Svensson, V., Marioni, J.C. & Teichmann, S.A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610–620 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Stewart-Ornstein, J., Weissman, J.S. & El-Samad, H. Cellular noise regulons underlie fluctuations in Saccharomyces cerevisiae. Mol. Cell 45, 483–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Swain, P.S., Elowitz, M.B. & Siggia, E.D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA 99, 12795–12800 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ilicic, T. et al. Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 17, 29 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Leek, J.T. et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11, 733–739 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Johnson, W.E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    Article  PubMed  Google Scholar 

  47. Benito, M. et al. Adjustment of systematic microarray data biases. Bioinformatics 20, 105–114 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Gagnon-Bartsch, J.A. & Speed, T.P. Using control genes to correct for unwanted variation in microarray data. Biostatistics 13, 539–552 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Leek, J.T. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 42, e161–e161 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  50. Bullard, J.H., Purdom, E., Hansen, K.D. & Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11, 94 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lovén, J. et al. Revisiting global gene expression analysis. Cell 151, 476–482 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wagner, G.P., Kin, K. & Lynch, V.J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281–285 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Li, B., Ruotti, V., Stewart, R.M., Thomson, J.A. & Dewey, C.N. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26, 493–500 (2010).

    Article  PubMed  CAS  Google Scholar 

  57. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Stegle, O., Teichmann, S.A. & Marioni, J.C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Hicks, S.C., Teng, M. & Irizarry, R.A. On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data. bioRxiv (2015).

  60. Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093–1095 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Vallejos, C.A., Marioni, J.C. & Richardson, S. BASiCS: Bayesian analysis of single-cell sequencing data. PLOS Comput. Biol. 11, e1004333 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lun, A.T.L., Bach, K. & Marioni, J.C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75 (2016).

    Article  PubMed  CAS  Google Scholar 

  63. Vallejos, C.A., Richardson, S. & Marioni, J.C. Beyond comparisons of means: understanding changes in gene expression at the single-cell level. Genome Biol. 17, 70 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Prabhakaran, S., Azizi, E., Carr, A. & Pe'er, D. Dirichlet process mixture model for correcting technical variation in single-cell gene expression data. Proc. 33nd Int. Conf. Mach. Learn., ICML 2016, 1070–1079 (2016).

  65. Levin, J.Z. et al. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat. Methods 7, 709–715 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Alter, O., Brown, P.O. & Botstein, D. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. USA 97, 10101–10106 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Risso, D., Schwartz, K., Sherlock, G. & Dudoit, S. GC-content normalization for RNA-Seq data. BMC Bioinformatics 12, 480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Risso, D., Ngai, J., Speed, T.P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leek, J.T. & Storey, J.D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, 1724–1735 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Jiang, L. et al. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 21, 1543–1551 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marinov, G.K. et al. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 24, 496–510 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Achim, K. et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33, 503–509 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Munro, S.A. et al. Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures. Nat. Commun. 5, 5125 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Grün, D., Kester, L. & van Oudenaarden, A. Validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637–640 (2014).

    Article  PubMed  CAS  Google Scholar 

  75. Grün, D. & van Oudenaarden, A. Design and analysis of single-cell sequencing experiments. Cell 163, 799–810 (2015).

    Article  PubMed  CAS  Google Scholar 

  76. Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Reinius, B. et al. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq. Nat. Genet. http://dx.doi.org/10.1038/ng.3678 (2016).

  78. Jaitin, D.A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, Y. & Navin, N.E. Advances and applications of single-cell sequencing technologies. Mol. Cell 58, 598–609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Saliba, A.-E., Westermann, A.J., Gorski, S.A. & Vogel, J. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 42, 8845–8860 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 17, 77 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11, 163–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Fu, G.K. et al. Molecular indexing enables quantitative targeted RNA sequencing and reveals poor efficiencies in standard library preparations. Proc. Natl. Acad. Sci. USA 111, 1891–1896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shiroguchi, K., Jia, T.Z., Sims, P.A. & Xie, X.S. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes. Proc. Natl. Acad. Sci. USA 109, 1347–1352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fu, G.K., Hu, J., Wang, P.-H. & Fodor, S.P.A. Counting individual DNA molecules by the stochastic attachment of diverse labels. Proc. Natl. Acad. Sci. USA 108, 9026–9031 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kharchenko, P.V., Silberstein, L. & Scadden, D.T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740–742 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McDavid, A. et al. Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics 29, 461–467 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. McDavid, A. et al. Modeling bi-modality improves characterization of cell cycle on gene expression in single cells. PLOS Comput. Biol. 10, e1003696 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Dalrymple, M.L., Hudson, I.L. & Ford, R.P.K. Finite Mixture, Zero-inflated Poisson and Hurdle models with application to SIDS. Comput. Stat. Data Anal. 41, 491–504 (2003).

    Article  Google Scholar 

  91. Fan, J. et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods 13, 241–244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pierson, E. & Yau, C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 16, 241 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Buettner, F., Moignard, V., Göttgens, B. & Theis, F.J. Probabilistic PCA of censored data: accounting for uncertainties in the visualization of high-throughput single-cell qPCR data. Bioinformatics 30, 1867–1875 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. DeTomaso, D. & Yosef, N. FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data. BMC Bioinformatics 17, 315 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Qiu, P. et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886–891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Antebi, Y.E. et al. Mapping differentiation under mixed culture conditions reveals a tunable continuum of T cell fates. PLoS Biol. 11, e1001616 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Korem, Y. et al. Geometry of the gene expression space of individual cells. PLOS Comput. Biol. 11, e1004224 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Patel, A.P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gokce, O. et al. Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-Seq. Cell Reports 16, 1126–1137 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Pollen, A.A. et al. Molecular identity of human outer radial glia during cortical development. Cell 163, 55–67 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kowalczyk, M.S. et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25, 1860–1872 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lande-Diner, L., Stewart-Ornstein, J., Weitz, C.J. & Lahav, G. Single-cell analysis of circadian dynamics in tissue explants. Mol. Biol. Cell 26, 3940–3945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155–160 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618–630 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Beyer, K.S., Goldstein, J., Ramakrishnan, R. & Shaft, U. When is “nearest neighbor” meaningful? in Proceedings of the 7th International Conference on Database Theory (ICDT'99) (eds. Beeri, C. & Buneman, P.) 217–235 (Springer, 1999).

    Google Scholar 

  107. Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Chu, L.-F. et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biol. 17, 173 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Amir, A.D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545–552 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  110. Shekhar, K., Brodin, P., Davis, M.M. & Chakraborty, A.K. Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc. Natl. Acad. Sci. USA 111, 202–207 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Wilson, N.K. et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16, 712–724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. van der Maaten, L. & Hinton, G.E. Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  113. van der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).

    Google Scholar 

  114. Mahfouz, A. et al. Visualizing the spatial gene expression organization in the brain through non-linear similarity embeddings. Methods 73, 79–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Maaten, L. Learning a parametric embedding by preserving local structure. in Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS-09) (eds. Dyk, D.V & Welling, M.) 384–391 (2009).

    Google Scholar 

  116. Berman, G.J., Choi, D.M., Bialek, W. & Shaevitz, J.W. Mapping the stereotyped behaviour of freely moving fruit flies. J. R. Soc. Interface 11, 20140672 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, USA (eds. Simoudis, E., Han, J. & Fayyad, U.) 226–231 (AAAI Press, 1996).

    Google Scholar 

  118. Habib, N. et al. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353, 925–928 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. bioRxiv Preprint at http://biorxiv.org/content/early/2016/05/09/052225 (2016).

  120. Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tsafrir, D. et al. Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices. Bioinformatics 21, 2301–2308 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Madeira, S.C. & Oliveira, A.L. Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinformatics 1, 24–45 (2004).

    Article  CAS  Google Scholar 

  123. Blondel, V.D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008).

  124. Newman, M.E.J. Communities, modules and large-scale structure in networks. Nat. Phys. 8, 25–31 (2012).

    Article  CAS  Google Scholar 

  125. Newman, M.E.J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).

    Article  CAS  Google Scholar 

  126. Bray, N.L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Ntranos, V., Kamath, G.M., Zhang, J.M., Pachter, L. & Tse, D.N. Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts. Genome Biol. 17, 112 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Grün, D. et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 19, 266–277 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Horowitz, A. et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci. Transl. Med. 5, 208ra145 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Fruchterman, T.M.J. & Reingold, E.M. Graph drawing by force-directed placement. Softw. Pract. Exper. 21, 1129–1164 (1991).

    Article  Google Scholar 

  131. Shoval, O. et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science 336, 1157–1160 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Hart, Y. et al. Inferring biological tasks using Pareto analysis of high-dimensional data. Nat. Methods 12, 233–235, 3, 235 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Tendler, A., Mayo, A. & Alon, U. Evolutionary tradeoffs, Pareto optimality and the morphology of ammonite shells. BMC Syst. Biol. 9, 12 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Sheftel, H., Shoval, O., Mayo, A. & Alon, U. The geometry of the Pareto front in biological phenotype space. Ecol. Evol. 3, 1471–1483 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gupta, P.B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Wagner, F. GO-PCA: an unsupervised method to explore gene expression data using prior knowledge. PLoS One 10, e0143196 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Chung, N.C. & Storey, J.D. Statistical significance of variables driving systematic variation in high-dimensional data. Bioinformatics 31, 545–554 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Bar-Joseph, Z., Gitter, A. & Simon, I. Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet. 13, 552–564 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Bendall, S.C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714–725 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kafri, R. et al. Dynamics extracted from fixed cells reveal feedback linking cell growth to cell cycle. Nature 494, 480–483 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Magwene, P.M., Lizardi, P. & Kim, J. Reconstructing the temporal ordering of biological samples using microarray data. Bioinformatics 19, 842–850 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Booth, K.S. & Lueker, G.S. Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976).

    Article  Google Scholar 

  145. Haghverdi, L., Buettner, F. & Theis, F.J. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 31, 2989–2998 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Moignard, V. et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33, 269–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241–1243 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Coifman, R.R. et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl. Acad. Sci. USA 102, 7426–7431 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Marco, E. et al. Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc. Natl. Acad. Sci. USA 111, E5643–E5650 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tibshirani, R., Walther, G. & Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B. Stat. Methodol. 63, 411–423 (2001).

    Article  Google Scholar 

  151. Setty, M. et al. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotechnol. 34, 637–645 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Whitfield, M.L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977–2000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Leng, N. et al. Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments. Nat. Methods 12, 947–950 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rosenkrantz, D., Stearns, R. & Lewis, P. I. I. An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6, 563–581 (1977).

    Article  Google Scholar 

  155. Cho, R.J. et al. Transcriptional regulation and function during the human cell cycle. Nat. Genet. 27, 48–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Zopf, C.J., Quinn, K., Zeidman, J. & Maheshri, N. Cell-cycle dependence of transcription dominates noise in gene expression. PLOS Comput. Biol. 9, e1003161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Shin, J. et al. Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Llorens-Bobadilla, E. et al. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17, 329–340 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Lawrence, N. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. J. Mach. Learn. Res. 6, 1783–1816 (2005).

    Google Scholar 

  160. Yosef, N. & Regev, A. Writ large: genomic dissection of the effect of cellular environment on immune response. Science 354, 64–68 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Lee, J.H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lovatt, D. et al. Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nat. Methods 11, 190–196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lubeck, E. & Cai, L. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9, 743–748 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lubeck, E., Coskun, A.F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Crosetto, N., Bienko, M. & van Oudenaarden, A. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16, 57–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Rockhill, R.L., Euler, T. & Masland, R.H. Spatial order within but not between types of retinal neurons. Proc. Natl. Acad. Sci. USA 97, 2303–2307 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Masland, R.H. The neuronal organization of the retina. Neuron 76, 266–280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Scialdone, A. et al. Resolving early mesoderm diversification through single-cell expression profiling. Nature 535, 289–293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Durruthy-Durruthy, R. et al. Reconstruction of the mouse otocyst and early neuroblast lineage at single-cell resolution. Cell 157, 964–978 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Durruthy-Durruthy, R., Gottlieb, A. & Heller, S. 3D computational reconstruction of tissues with hollow spherical morphologies using single-cell gene expression data. Nat. Protoc. 10, 459–474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kim, H.D., Shay, T., O'Shea, E.K. & Regev, A. Transcriptional regulatory circuits: predicting numbers from alphabets. Science 325, 429–432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yosef, N. & Regev, A. Impulse control: temporal dynamics in gene transcription. Cell 144, 886–896 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wills, Q.F. et al. Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat. Biotechnol. 31, 748–752 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Tay, S. et al. Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing. Nature 466, 267–271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Xue, Z. et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593–597 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Munsky, B., Neuert, G. & van Oudenaarden, A. Using gene expression noise to understand gene regulation. Science 336, 183–187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kim, J.K. & Marioni, J.C. Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data. Genome Biol. 14, R7 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Karlebach, G. & Shamir, R. Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9, 770–780 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. Fisher, J., Köksal, A.S., Piterman, N. & Woodhouse, S. Synthesising executable gene regulatory networks from single-cell gene expression data. in Computer Aided Verification—27th International Conference, CAV 2015, San Francisco, California, USA, July 18–24, 2015, Proceedings, Part I (eds. Kroening, D. & Păsăreanu, C.S.) 544–560 (Springer, 2015).

    Google Scholar 

  182. Köksal, A.S. et al. Synthesis of biological models from mutation experiments. in Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages 469–482 (ACM, 2013).

    Google Scholar 

  183. Botev, Z.I., Grotowski, J.F. & Kroese, D.P. Kernel density estimation via diffusion. Ann. Stat. 38, 2916–2957 (2010).

    Article  Google Scholar 

  184. Battich, N., Stoeger, T. & Pelkmans, L. Control of transcript variability in single mammalian cells. Cell 163, 1596–1610 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Bahar Halpern, K. et al. Nuclear retention of mRNA in mammalian tissues. Cell Reports 13, 2653–2662 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Rabani, M. et al. High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies. Cell 159, 1698–1710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  189. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  PubMed  CAS  Google Scholar 

  190. Li, J.J., Bickel, P.J. & Biggin, M.D. System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ 2, e270 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Jovanovic, M. et al. Immunogenetics. Dynamic profiling of the protein life cycle in response to pathogens. Science 347, 1259038 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Clark, S.J., Lee, H.J., Smallwood, S.A., Kelsey, G. & Reik, W. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol. 17, 72 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Zhou, V.W., Goren, A. & Bernstein, B.E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12, 7–18 (2011).

    Article  PubMed  CAS  Google Scholar 

  195. Dixon, J.R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Landan, G. et al. Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nat. Genet. 44, 1207–1214 (2012).

    Article  CAS  PubMed  Google Scholar 

  197. Shipony, Z. et al. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Nature 513, 115–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  198. Schwartzman, O. & Tanay, A. Single-cell epigenomics: techniques and emerging applications. Nat. Rev. Genet. 16, 716–726 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Cadwell, C.R. et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotechnol. 34, 199–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Xin, R.S. et al. Shark: SQL and rich analytics at scale. in Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data 13–24 (ACM, 2013).

    Book  Google Scholar 

  201. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  202. Navin, N.E. The first five years of single-cell cancer genomics and beyond. Genome Res. 25, 1499–1507 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Gawad, C., Koh, W. & Quake, S.R. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc. Natl. Acad. Sci. USA 111, 17947–17952 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Potter, N.E. et al. Single-cell mutational profiling and clonal phylogeny in cancer. Genome Res. 23, 2115–2125 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Meyer, M. et al. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc. Natl. Acad. Sci. USA 112, 851–856 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Biesecker, L.G. & Spinner, N.B. A genomic view of mosaicism and human disease. Nat. Rev. Genet. 14, 307–320 (2013).

    Article  CAS  PubMed  Google Scholar 

  207. Cai, X. et al. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Reports 8, 1280–1289 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Evrony, G.D. et al. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151, 483–496 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. McConnell, M.J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Gole, J. et al. Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat. Biotechnol. 31, 1126–1132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Knouse, K.A., Wu, J., Whittaker, C.A. & Amon, A. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc. Natl. Acad. Sci. USA 111, 13409–13414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Zhang, C.-Z. et al. Calibrating genomic and allelic coverage bias in single-cell sequencing. Nat. Commun. 6, 6822 (2015).

    Article  CAS  PubMed  Google Scholar 

  213. Kim, K.I. & Simon, R. Using single cell sequencing data to model the evolutionary history of a tumor. BMC Bioinformatics 15, 27 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Suzuki, A. et al. Single-cell analysis of lung adenocarcinoma cell lines reveals diverse expression patterns of individual cells invoked by a molecular target drug treatment. Genome Biol. 16, 66 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Weirather, J.L. et al. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing. Nucleic Acids Res. 43, e116–e116 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Afik, S. et al. Targeted reconstruction of T cell receptor sequence from single cell RNA-sequencing links CDR3 length to T cell differentiation state. bioRxiv (2016).

  217. Stubbington, M.J.T. et al. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13, 329–332 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in IDH-mutant oligodendroglioma. Nature (in the press) (2016).

  219. Dey, S.S., Kester, L., Spanjaard, B., Bienko, M. & van Oudenaarden, A. Integrated genome and transcriptome sequencing of the same cell. Nat. Biotechnol. 33, 285–289 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Macaulay, I.C. et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519–522 (2015).

    Article  CAS  PubMed  Google Scholar 

  221. Angermueller, C. et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods 13, 229–232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Frei, A.P. et al. Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat. Methods 13, 269–275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Albayrak, C. et al. Digital quantification of proteins and mRNA in single mammalian cells. Mol. Cell 61, 914–924 (2016).

    Article  CAS  PubMed  Google Scholar 

  224. Darmanis, S. et al. Simultaneous multiplexed measurement of RNA and proteins in single cells. Cell Reports 14, 380–389 (2016).

    Article  CAS  PubMed  Google Scholar 

  225. Albert, F.W. & Kruglyak, L. The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. 16, 197–212 (2015).

    Article  CAS  PubMed  Google Scholar 

  226. Risso, D. et al. Power gain: how normalization affects reproducibility and biological insight of RNA-seq studies in neuroscience [v1; not peer reviewed]. F1000Research ISCB Comm J. 4, 411 (2015).

    Google Scholar 

Download references

Acknowledgements

We thank E. Lander, A.K. Shalek, R.B. Fletcher, O. Ram, and D. Stafford for helpful discussions, and L. Gaffney and A. Hupalowska for artwork. A.W. and N.Y. were supported in part by the BRAIN Initiative grant U01 MH105979 from the US National Institute of Mental Health. A.R. is an Investigator of the Howard Hughes Medical Institute and was supported by the Klarman Cell Observatory at the Broad Institute, NIH grant P50 HG006193, Koch Institute Support (core) grant P30-CA14051 from the National Cancer Institute, NIH BRAIN grant 1U01MH105960-01, NCI grant 1U24CA180922, and NIAID grant 1U24AI118672-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aviv Regev.

Ethics declarations

Competing interests

A.R. is a member of the Scientific Advisory Board for Thermo Fisher Scientific and Syros Pharmaceuticals and a consultant for Driver Group. A.W. and N.Y. declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat Biotechnol 34, 1145–1160 (2016). https://doi.org/10.1038/nbt.3711

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3711

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics