Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional interactions between the gut microbiota and host metabolism

Abstract

The link between the microbes in the human gut and the development of obesity, cardiovascular disease and metabolic syndromes, such as type 2 diabetes, is becoming clearer. However, because of the complexity of the microbial community, the functional connections are less well understood. Studies in both mice and humans are helping to show what effect the gut microbiota has on host metabolism by improving energy yield from food and modulating dietary or the host-derived compounds that alter host metabolic pathways. Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, we will be in a better position to develop treatments for metabolic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of colonic fermentation of dietary fibres.
Figure 2: Features of the gut microbiota that promote obesity and insulin resistance.
Figure 3: Diet-independent and -dependent microbial effects on host metabolism.
Figure 4: Different microbial innate immune mechanisms affect host metabolism in the gut and liver.

Similar content being viewed by others

References

  1. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010). This article is the first catalogue of the human metagenome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009). This paper reports that the diversity of the gut microbiota differs between lean and obese individuals.

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Sjogren, K. et al. The gut microbiota regulates bone mass in mice. J. Bone Miner. Res. 27, 1357–1367 (2012).

    Article  PubMed  Google Scholar 

  4. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004). This article reports a link between the gut microbiota and adiposity.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Reinhardt, C. et al. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 483, 627–631 (2012).

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Stappenbeck, T. S., Hooper, L. V. & Gordon, J. I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl Acad. Sci. USA 99, 15451–15455 (2002).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  7. Larsson, E. et al. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut 61, 1124–1131 (2011).

    Article  PubMed  Google Scholar 

  8. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  10. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Furet, J. P. et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59, 3049–3057 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duncan, S. H. et al. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. (Lond.) 32, 1720–1724 (2008).

    Article  CAS  Google Scholar 

  13. Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190–195 (2010).

    Article  PubMed  Google Scholar 

  14. Zhang, H. et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl Acad. Sci. USA 106, 2365–2370 (2009).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  15. Sjostrom, L. et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med. 351, 2683–2693 (2004).

    Article  PubMed  Google Scholar 

  16. Sjostrom, L. et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357, 741–752 (2007).

    Article  PubMed  Google Scholar 

  17. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Membrez, M. et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J. 22, 2416–2426 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Caesar, R. et al. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut http://dx.doi.org/10.1136/gutjnl-2011-301689 (25 April, 2012).

  20. Bergman, E. N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567–590 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Samuel, B. S. & Gordon, J. I. A humanized gnotobiotic mouse model of host–archaeal–bacterial mutualism. Proc. Natl Acad. Sci. USA 103, 10011–10016 (2006).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  22. Hoverstad, T. & Midtvedt, T. Short-chain fatty acids in germfree mice and rats. J. Nutr. 116, 1772–1776 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Wostmann, B. S., Larkin, C., Moriarty, A. & Bruckner-Kardoss, E. Dietary intake, energy metabolism, and excretory losses of adult male germfree Wistar rats. Lab. Anim. Sci. 33, 46–50 (1983).

    CAS  PubMed  Google Scholar 

  24. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006). This article demonstrates that the microbiota of those who are obese is enriched in genes for energy harvest and that obesity can be transmitted by transplantation of microbiota.

    Article  ADS  PubMed  Google Scholar 

  25. Nair, S., Cope, K., Risby, T. H. & Diehl, A. M. Obesity and female gender increase breath ethanol concentration: potential implications for the pathogenesis of nonalcoholic steatohepatitis. Am. J. Gastroenterol. 96, 1200–1204 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010). This article demonstrates the affect of diet in shaping the gut microbiota.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  29. Ramirez-Farias, C. et al. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii . Br. J. Nutr. 101, 541–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Cani, P. D. et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50, 2374–2383 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Robertson, M. D., Bickerton, A. S., Dennis, A. L., Vidal, H. & Frayn, K. N. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am. J. Clin. Nutr. 82, 559–567 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Hildebrandt, M. A. et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137, 1716–1724 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Turnbaugh, P. J., Bäckhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xu, J. et al. A genomic view of the human–Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076 (2003).

    Article  CAS  ADS  PubMed  Google Scholar 

  37. Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bäckhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Velagapudi, V. R. et al. The gut microbiota modulates host energy and lipid metabolism in mice. J. Lipid Res. 51, 1101–1112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Davie, J. R. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 133, 2485S–2493S (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  43. Sina, C. et al. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 183, 7514–7522 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Samuel, B. S. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. USA 105, 16767–16772 (2008).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  46. Wostmann, B. S. Intestinal bile acids and cholesterol absorption in the germfree rat. J. Nutr. 103, 982–990 (1973).

    Article  CAS  PubMed  Google Scholar 

  47. Swann, J. R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl Acad. Sci. USA 108, 4523–4530 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Gustafsson, B. E., Bergstrom, S., Lindstedt, S. & Norman, A. Turnover and nature of fecal bile acids in germfree and infected rats fed cholic acid-24–14C; bile acids and steroids 41. Proc. Soc. Exp. Biol. Med. 94, 467–471 (1957).

    Article  CAS  PubMed  Google Scholar 

  49. Hylemon, P. B. et al. Bile acids as regulatory molecules. J. Lipid Res. 50, 1509–1520 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sinal, C. J. et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102, 731–744 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. van Dijk, T. H. et al. An increased flux through the glucose 6-phosphate pool in enterocytes delays glucose absorption in Fxr−/− mice. J. Biol. Chem. 284, 10315–10323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Prawitt, J. et al. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60, 1861–1871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    Article  CAS  ADS  PubMed  Google Scholar 

  55. Vance, D. E. Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr. Opin. Lipidol. 19, 229–234 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012). This paper elegantly connects microbial recognition by inflammasomes in the gut with altered permeability and liver steatosis.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  57. Spencer, M. D. et al. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140, 976–986 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Dumas, M. E. et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl Acad. Sci. USA 103, 12511–12516 (2006).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  59. Prentiss, P. G. et al. The metabolism of choline by the germfree rat. Arch. Biochem. Biophys. 94, 424–429 (1961).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  61. Osborn, O. & Olefsky, J. M. The cellular and signaling networks linking the immune system and metabolism in disease. Nature Med. 18, 363–374 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Creely, S. J. et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 292, E740–E747 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007). This paper reports that endotoxin is sufficient to alter metabolic inflammation and insulin sensitivity.

    Article  CAS  PubMed  Google Scholar 

  64. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Med. 15, 914–920 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nature Med. 15, 921–929 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Liu, J. et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nature Med. 15, 940–945 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Med. 15, 930–939 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Amar, J. et al. Energy intake is associated with endotoxemia in apparently healthy men. Am. J. Clin. Nutr. 87, 1219–1223 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Erridge, C., Attina, T., Spickett, C. M. & Webb, D. J. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 86, 1286–1292 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Ghoshal, S., Witta, J., Zhong, J., de Villiers, W. & Eckhardt, E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J. Lipid Res. 50, 90–97 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Wei, X. et al. Fatty acid synthase modulates intestinal barrier function through palmitoylation of mucin 2. Cell Host Microbe 11, 140–152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gummesson, A. et al. Intestinal permeability is associated with visceral adiposity in healthy women. Obesity 19, 2280–2282 (2011).

    Article  PubMed  Google Scholar 

  73. Amar, J. et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 54, 3055–3061 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Amar, J. et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol. Med. 3, 559–572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schertzer, J. D. et al. NOD1 activators link innate immunity to insulin resistance. Diabetes 60, 2206–2215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Saberi, M. et al. Hematopoietic cell-specific deletion of Toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab. 10, 419–429 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228–231 (2010).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  78. Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. Inflammasomes in health and disease. Nature 481, 278–286 (2012).

    Article  CAS  ADS  PubMed  Google Scholar 

  79. Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nature Med. 17, 179–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Murphy, E. F. et al. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut http://dx.doi.org/10.1136/gutjnl-2011-300705 (16 February, 2012).

  82. Eiseman, B., Silen, W., Bascom, G. S. & Kauvar, A. J. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44, 854–859 (1958).

    CAS  PubMed  Google Scholar 

  83. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in subjects with metabolic syndrome. Gastroenterology http://dx.doi.org/10.1053/j.gastro.2012.06.031 (20 June, 2012). This article reports that insulin resistance in obese humans can be improved by transplantation of a lean microbiota.

  84. Food and Agriculture Organization of the United Nations and World Health Organization. Working Group Report on Drafting Guidelines for the evaluation of Probiotics in Food. ftp://ftp.fao.org/es/esn/food/wgreport2.pdf (FAO and WHO, 2002).

  85. Roberfroid, M. et al. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104, S1–S63 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Hallén for contribution to the artwork and to R. Perkins for reading the manuscript. Work in the authors' laboratory is funded by the Swedish Research Council, the Swedish Foundation for Strategic Research, Torsten Söderberg's Foundation, Ragnar Söderberg's foundation, AFA Insurances, the Knut and Alice Wallenberg foundation, the Swedish heart lung foundation, the NovoNordisk foundation and the Swedish diabetes foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik Bäckhed.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tremaroli, V., Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012). https://doi.org/10.1038/nature11552

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11552

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing