Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Emerging role of adipose tissue hypoxia in obesity and insulin resistance

Abstract

Recent studies consistently support a hypoxia response in the adipose tissue in obese animals. The observations have led to the formation of an exciting concept, adipose tissue hypoxia (ATH), in the understanding of major disorders associated with obesity. ATH may provide cellular mechanisms for chronic inflammation, macrophage infiltration, adiponectin reduction, leptin elevation, adipocyte death, endoplasmic reticulum stress and mitochondrial dysfunction in white adipose tissue in obesity. The concept suggests that inhibition of adipogenesis and triglyceride synthesis by hypoxia may be a new mechanism for elevated free fatty acids in the circulation in obesity. ATH may represent a unified cellular mechanism for a variety of metabolic disorders and insulin resistance in patients with metabolic syndrome. It suggests a new mechanism of pathogenesis of insulin resistance and inflammation in obstructive sleep apnea. In addition, it may help us to understand the beneficial effects of caloric restriction, physical exercise and angiotensin II inhibitors in the improvement of insulin sensitivity. In this review article, literatures are reviewed to summarize the evidence and possible cellular mechanisms of ATH. The directions and road blocks in the future studies are analyzed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Hotamisligil GS . Inflammation and metabolic disorders. Nature 2006; 444: 860–867.

    Article  CAS  PubMed  Google Scholar 

  2. Peraldi P, Spiegelman B . TNF-alpha and insulin resistance: summary and future prospects. Mol Cell Biochem 1998; 182: 169–175.

    CAS  PubMed  Google Scholar 

  3. Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 2001; 293: 1673–1677.

    CAS  PubMed  Google Scholar 

  4. Kim JK, Kim YJ, Fillmore JJ, Chen Y, Moore I, Lee J et al. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest 2001; 108: 437–446.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Itani SI, Ruderman NB, Schmieder F, Boden G . Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 2002; 51: 2005–2011.

    CAS  PubMed  Google Scholar 

  6. Lee JY, Ye J, Gao Z, Youn HS, Lee WH, Zhao L et al. Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinases/AKT by saturated and polyunsaturated fatty acids. J Biol Chem 2003; 278: 37041–37051.

    CAS  PubMed  Google Scholar 

  7. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS . TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006; 116: 3015–3025.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsukumo DML, Carvalho-Filho MA, Carvalheira JBC, Prada PO, Hirabara SM, Schenka AA et al. Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 2007; 56: 1986–1998.

    CAS  PubMed  Google Scholar 

  9. Yu C, Chen Y, Zong H, Wang Y, Bergeron R, Kim JK et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 2002; 277: 50230–50236.

    CAS  PubMed  Google Scholar 

  10. Gao Z, Zuberi A, Quon M, Dong Z, Ye J . Aspirin inhibits TNF-induced serine phosphorylation of IRS-1 through targeting multiple serine kinases. J Biol Chem 2003; 278: 24944–24950.

    CAS  PubMed  Google Scholar 

  11. Grigsby RJ, Dobrowsky RT . Inhibition of ceramide production reverses TNF-induced insulin resistance. Biochem Biophys Res Commun 2001; 287: 1121–1124.

    CAS  PubMed  Google Scholar 

  12. Teruel T, Hernandez R, Lorenzo M . Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state. Diabetes 2001; 50: 2563–2571.

    CAS  PubMed  Google Scholar 

  13. Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 2007; 5: 167–179.

    CAS  PubMed  Google Scholar 

  14. Ozcan U, Cao Q, Yilmaz E, Lee A-H, Iwakoshi NN, Ozdelen E et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004; 306: 457–461.

    PubMed  Google Scholar 

  15. Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K, Hatazaki M, Matsuoka T-A et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem 2005; 280: 847–851.

    CAS  PubMed  Google Scholar 

  16. McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F et al. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci USA 2004; 101: 8852–8857.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Houstis N, Rosen ED, Lander ES . Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006; 440: 944–948.

    CAS  PubMed  Google Scholar 

  18. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005; 46: 2347–2355.

    CAS  PubMed  Google Scholar 

  19. Strissel KJ, Stancheva Z, Miyoshi H, Perfield II JW, DeFuria J, Jick Z et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007; 56: 2910–2918.

    CAS  PubMed  Google Scholar 

  20. Ye J, Gao Z, Yin J, He H . Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 2007; 293: E1118–E1128.

    CAS  PubMed  Google Scholar 

  21. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 2007; 56: 901–911.

    CAS  PubMed  Google Scholar 

  22. Lazar MA . How obesity causes diabetes: not a tall tale. Science 2005; 307: 373–375.

    CAS  PubMed  Google Scholar 

  23. Rajala MW, Scherer PE . Minireview: The adipocyte—at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 2003; 144: 3765–3773.

    CAS  PubMed  Google Scholar 

  24. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K . Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006; 116: 1784–1792.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kahn BB, Flier JS . Obesity and insulin resistance. J Clin Invest 2000; 106: 473–481.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821–1830.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW . Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Takahashi K, Mizuarai S, Araki H, Mashiko S, Ishihara A, Kanatani A et al. Adiposity elevates plasma MCP-1 levels leading to the increased CD11b-positive monocytes in mice. J Biol Chem 2003; 278: 46654–46660.

    CAS  PubMed  Google Scholar 

  29. Saltiel AR, Kahn CR . Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414: 799–806.

    CAS  PubMed  Google Scholar 

  30. White MF . IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 2002; 283: E413–E422.

    CAS  PubMed  Google Scholar 

  31. Rui L, Aguirre V, Kim JK, Shulman GI, Lee A, Corbould A et al. Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest 2001; 107: 181–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao Z, Zhang X, Zuberi A, Hwang D, Quon MJ, Lefevre M et al. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol Endocrinol 2004; 18: 2024–2034.

    CAS  PubMed  Google Scholar 

  33. Nguyen MT, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI et al. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem 2005; 280: 35361–35371.

    CAS  PubMed  Google Scholar 

  34. Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon MJ et al. Serine phosphorylation of insulin receptor substrate 1 (IRS-1) by inhibitor KappaB kinase (IKK) complex. J Biol Chem 2002; 277: 48115–48121.

    CAS  PubMed  Google Scholar 

  35. Hirosumi J, Tuncman G, Chang L, Gorgun C, Uysal K, Maeda K et al. A central role for JNK in obesity and insulin resistance. Nature 2002; 420: 333–336.

    CAS  PubMed  Google Scholar 

  36. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 1999; 48: 1270–1274.

    CAS  PubMed  Google Scholar 

  37. Tremblay F, Brule S, Hee Um S, Li Y, Masuda K, Roden M et al. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. PNAS 2007; 104: 14056–14061.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Suzawa M, Takada I, Yanagisawa J, Ohtake F, Ogawa S, Yamauchi T et al. Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nat Cell Biol 2003; 5: 224–230.

    CAS  PubMed  Google Scholar 

  39. Ruan H, Pownall HJ, Lodish HF . Troglitazone antagonizes TNF-alpha-induced reprogramming of adipocyte gene expression by inhibiting the transcriptional regulatory functions of NF-kB. J Biol Chem 2003; 278: 28181–28192.

    CAS  PubMed  Google Scholar 

  40. Gao Z, He Q, Peng B, Chiao PJ, Ye J . Regulation of nuclear translocation of HDAC3 by I{kappa}B{alpha} is required for tumor necrosis factor inhibition of peroxisome proliferator-activated receptor {gamma} function. J Biol Chem 2006; 281: 4540–4547.

    CAS  PubMed  Google Scholar 

  41. Spiegelman BM . PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998; 47: 507–514.

    CAS  PubMed  Google Scholar 

  42. Berger J, Moller DE . The mechanisms of action of PPARs. Annu Rev Med 2002; 53: 409–435.

    CAS  PubMed  Google Scholar 

  43. Lazar MA . Progress in cardiovascular biology: PPAR for the course. Nat Med 2001; 7: 23–24.

    CAS  PubMed  Google Scholar 

  44. Yun Z, Maecker HL, Johnson RS, Giaccia AJ . Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2002; 2: 331–341.

    CAS  PubMed  Google Scholar 

  45. Lolmede K, Durand de Saint Front V, Galitzky J, Lafontan M, Bouloumie A . Effects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A adipocytes. Int J Obes Relat Metab Disord 2003; 27: 1187–1195.

    CAS  PubMed  Google Scholar 

  46. Chen B, Lam KS, Wang Y, Wu D, Lam MC, Shen J et al. Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes. Biochem Biophys Res Commun 2006; 341: 549–556.

    CAS  PubMed  Google Scholar 

  47. Wang B, Wood IS, Trayhurn P . Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch 2007.

  48. Trayhurn P, Wang B, Wood IS . Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr 2008; 100: 227–235.

    CAS  PubMed  Google Scholar 

  49. Trayhurn P, Wood IS . Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 2004; 92: 347–355.

    CAS  PubMed  Google Scholar 

  50. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV . Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes (Lond) 2008; 32: 451–463.

    CAS  Google Scholar 

  51. Kabon B, Nagele A, Reddy D, Eagon C, Fleshman JW, Sessler DI et al. Obesity decreases perioperative tissue oxygenation. Anesthesiology 2004; 100: 274–280.

    PubMed  Google Scholar 

  52. Fleischmann E, Kurz A, Niedermayr M, Schebesta K, Kimberger O, Sessler DI et al. Tissue oxygenation in obese and non-obese patients during laparoscopy. Obes Surg 2005; 15: 813–819.

    PubMed  PubMed Central  Google Scholar 

  53. Urtasun RC, Koch CJ, Franko AJ, Raleigh JA, Chapman JD . A novel technique for measuring human tissue pO2 at the cellular level. Br J Cancer 1986; 54: 453–457.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Semenza G . Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 2002; 64: 993–998.

    CAS  PubMed  Google Scholar 

  55. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC . HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 2006; 3: 187–197.

    CAS  PubMed  Google Scholar 

  56. Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van Obberghen E . Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem 2002; 277: 27975–27981.

    CAS  PubMed  Google Scholar 

  57. Semenza GL, Roth PH, Fang HM, Wang GL . Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 1994; 269: 23757–23763.

    CAS  PubMed  Google Scholar 

  58. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 1998; 12: 149–162.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 2005; 54: 2277–2286.

    CAS  PubMed  Google Scholar 

  60. Higami Y, Barger JL, Page GP, Allison DB, Smith SR, Prolla TA et al. Energy restriction lowers the expression of genes linked to inflammation, the cytoskeleton, the extracellular matrix, and angiogenesis in mouse adipose tissue. J Nutr 2006; 136: 343–352.

    CAS  PubMed  Google Scholar 

  61. Wang GL, Jiang BH, Rue EA, Semenza GL . Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92: 5510–5514.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang GL, Semenza GL . Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995; 270: 1230–1237.

    CAS  PubMed  Google Scholar 

  63. Semenza GL, Agani F, Feldser D, Iyer N, Kotch L, Laughner E et al. Hypoxia, HIF-1, and the pathophysiology of common human diseases. Adv Exp Med Biol 2000; 475: 123–130.

    CAS  PubMed  Google Scholar 

  64. Yu AY, Frid MG, Shimoda LA, Wiener CM, Stenmark K, Semenza GL . Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Physiol 1998; 275: L818–L826.

    CAS  PubMed  Google Scholar 

  65. Bergeron M, Yu AY, Solway KE, Semenza GL, Sharp FR . Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci 1999; 11: 4159–4170.

    CAS  PubMed  Google Scholar 

  66. Minet E, Michel G, Mottet D, Raes M, Michiels C . Transduction pathways involved in hypoxia-inducible factor-1 phosphorylation and activation. Free Radic Biol Med 2001; 31: 847–855.

    CAS  PubMed  Google Scholar 

  67. Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL . Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 2002; 277: 38205–38211.

    CAS  PubMed  Google Scholar 

  68. Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J . p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 1999; 274: 32631–32637.

    CAS  PubMed  Google Scholar 

  69. Phillips RJ, Mestas J, Gharaee-Kermani M, Burdick MD, Sica A, Belperio JA et al. Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1{alpha}. J Biol Chem 2005; 280: 22473–22481.

    CAS  PubMed  Google Scholar 

  70. Semenza GL . HIF-1 and human disease: one highly involved factor. Genes Dev 2000; 14: 1983–1991.

    CAS  PubMed  Google Scholar 

  71. Coban YK, Kurutas EB, Ciralik H . Ischemia-reperfusion injury of adipofascial tissue: an experimental study evaluating early histologic and biochemical alterations in rats. Mediators Inflamm 2005; 2005: 304–308.

    PubMed  Google Scholar 

  72. Michiels C, Minet E, Mottet D, Raes M . Regulation of gene expression by oxygen: NF-kappaB and HIF-1, two extremes. Free Radic Biol Med 2002; 33: 1231–1242.

    CAS  PubMed  Google Scholar 

  73. Murdoch C, Muthana M, Lewis CE . Hypoxia regulates macrophage functions in inflammation. J Immunol 2005; 175: 6257–6263.

    CAS  PubMed  Google Scholar 

  74. Lewis JS, Lee JA, Underwood JC, Harris AL, Lewis CE . Macrophage responses to hypoxia: relevance to disease mechanisms. J Leukoc Biol 1999; 66: 889–900.

    CAS  PubMed  Google Scholar 

  75. Pouyssegur J, Dayan F, Mazure NM . Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 2006; 441: 437–443.

    CAS  PubMed  Google Scholar 

  76. Haddad JJ . Science review: redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for hypoxia-inducible factor-1alpha. Crit Care 2003; 7: 47–54.

    PubMed  Google Scholar 

  77. Karin M . Nuclear factor-kappaB in cancer development and progression. Nature 2006; 441: 431–436.

    CAS  PubMed  Google Scholar 

  78. Baeuerle PA, Henkel T . Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 1994; 12: 141–179.

    CAS  PubMed  Google Scholar 

  79. Baldwin Jr AS . The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996; 14: 649–683.

    CAS  PubMed  Google Scholar 

  80. Ghosh S, Karin M . Missing pieces in the NF-kappaB puzzle. Cell 2002; 109 (Suppl): S81–S96.

    CAS  PubMed  Google Scholar 

  81. Ghosh S, May MJ, Kopp EB . NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Ann Rev Immunol 1998; 16: 225–260.

    CAS  Google Scholar 

  82. Hayden MS, Ghosh S . Shared principles in NF-[kappa]B signaling. Cell 2008; 132: 344–362.

    CAS  PubMed  Google Scholar 

  83. Rosen ED, Spiegelman BM . Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006; 444: 847–853.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L et al. Macrophage-specific PPAR[ggr] controls alternative activation and improves insulin resistance. Nature 2007; 447: 1116–1120.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hevener AL, Olefsky JM, Reichart D, Nguyen MTA, Bandyopadyhay G, Leung H-Y et al. Macrophage PPAR{gamma} is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin Invest 2007; 117: 1658–1669.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K-I, Kitazawa R et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006; 116: 1494–1505.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 2006; 281: 26602–26614.

    CAS  PubMed  Google Scholar 

  88. Inouye KE, Shi H, Howard JK, Daly CH, Lord GM, Rollins BJ et al. Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes 2007; 56: 2242–2250.

    CAS  PubMed  Google Scholar 

  89. Cho C-H, Jun Koh Y, Han J, Sung H-K, Jong Lee H, Morisada T et al. Angiogenic role of LYVE-1-positive macrophages in adipose tissue. Circ Res 2007; 100: e47–e57.

    CAS  PubMed  Google Scholar 

  90. Turner L, Scotton C, Negus R, Balkwill F . Hypoxia inhibits macrophage migration. Eur J Immunol 1999; 29: 2280–2287.

    CAS  PubMed  Google Scholar 

  91. Nishihira J . Novel pathophysiological aspects of macrophage migration inhibitory factor (review). Int J Mol Med 1998; 2: 17–28.

    CAS  PubMed  Google Scholar 

  92. Koong AC, Denko NC, Hudson KM, Schindler C, Swiersz L, Koch C et al. Candidate genes for the hypoxic tumor phenotype. Cancer Res 2000; 60: 883–887.

    CAS  PubMed  Google Scholar 

  93. Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T et al. MIF as a glucocorticoid-induced modulator of cytokine production. Nature 1995; 377: 68–71.

    CAS  PubMed  Google Scholar 

  94. Roger T, David J, Glauser MP, Calandra T . MIF regulates innate immune responses through modulation of Toll-like receptor 4. Nature 2001; 414: 920–924.

    CAS  PubMed  Google Scholar 

  95. Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 2003; 112: 645–657.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Skurk T, Herder C, Kraft I, Muller-Scholze S, Hauner H, Kolb H . Production and release of macrophage migration inhibitory factor from human adipocytes. Endocrinology 2005; 146: 1006–1011.

    CAS  PubMed  Google Scholar 

  97. Hirokawa J, Sakaue S, Furuya Y, Ishii J, Hasegawa A, Tagami S et al. Tumor necrosis factor-alpha regulates the gene expression of macrophage migration inhibitory factor through tyrosine kinase-dependent pathway in 3T3-L1 adipocytes. J Biochem (Tokyo) 1998; 123: 733–739.

    CAS  Google Scholar 

  98. Vozarova B, Stefan N, Hanson R, Lindsay RS, Bogardus C, Tataranni PA et al. Plasma concentrations of macrophage migration inhibitory factor are elevated in Pima Indians compared to Caucasians and are associated with insulin resistance. Diabetologia 2002; 45: 1739–1741.

    CAS  PubMed  Google Scholar 

  99. Yin J, Gao Z, He Q, Ye J . Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. AJP-E&M (In revision).

  100. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF . A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995; 270: 26746–26749.

    CAS  PubMed  Google Scholar 

  101. Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K . cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun 1996; 221: 286–289.

    CAS  PubMed  Google Scholar 

  102. Hu E, Liang P, Spiegelman BM . AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 1996; 271: 10697–10703.

    CAS  PubMed  Google Scholar 

  103. Nakano Y, Tobe T, Choi-Miura NH, Mazda T, Tomita M . Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem (Tokyo) 1996; 120: 803–812.

    CAS  Google Scholar 

  104. Berg AH, Combs TP, Scherer PE . ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 2002; 13: 84–89.

    CAS  PubMed  Google Scholar 

  105. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20: 1595–1599.

    CAS  PubMed  Google Scholar 

  106. Lindsay RS, Funahashi T, Hanson RL, Matsuzawa Y, Tanaka S, Tataranni PA et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 2002; 360: 57–58.

    CAS  PubMed  Google Scholar 

  107. Menzaghi C, Ercolino T, Di Paola R, Berg AH, Warram JH, Scherer PE et al. A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome. Diabetes 2002; 51: 2306–2312.

    CAS  PubMed  Google Scholar 

  108. Matsubara M, Maruoka S, Katayose S . Decreased plasma adiponectin concentrations in women with dyslipidemia. J Clin Endocrinol Metab 2002; 87: 2764–2769.

    CAS  PubMed  Google Scholar 

  109. Stefan N, Vozarova B, Funahashi T, Matsuzawa Y, Weyer C, Lindsay RS et al. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes 2002; 51: 1884–1888.

    CAS  PubMed  Google Scholar 

  110. Fantuzzi G . Adiponectin and inflammation: consensus and controversy. J Allergy Clin Immunol 2008; 121: 326–330.

    CAS  PubMed  Google Scholar 

  111. Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R . Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2002; 290: 1084–1089.

    CAS  PubMed  Google Scholar 

  112. Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M et al. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 2003; 52: 1655–1663.

    CAS  PubMed  Google Scholar 

  113. Seo JB, Moon HM, Noh MJ, Lee YS, Jeong HW, Yoo EJ et al. Adipocyte determination- and differentiation-dependent factor 1/sterol regulatory element-binding protein 1c regulates mouse adiponectin expression. J Biol Chem 2004; 279: 22108–22117.

    CAS  PubMed  Google Scholar 

  114. Qiao L, Shao J . SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem 2006; 281: 39915–39924.

    CAS  PubMed  Google Scholar 

  115. Jiang B-H, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK . Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 2001; 12: 363–369.

    CAS  PubMed  Google Scholar 

  116. Accili D, Arden KC . FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004; 117: 421–426.

    CAS  PubMed  Google Scholar 

  117. Teng X, Li D, Catravas JD, Johns RA . C/EBP-beta mediates iNOS induction by hypoxia in rat pulmonary microvascular smooth muscle cells. Circ Res 2002; 90: 125–127.

    CAS  PubMed  Google Scholar 

  118. Yan SF, Tritto I, Pinsky D, Liao H, Huang J, Fuller G et al. Induction of interleukin 6 (IL-6) by hypoxia in vascular cells. Central role of the binding site for nuclear factor-IL-6. J Biol Chem 1995; 270: 11463–11471.

    CAS  PubMed  Google Scholar 

  119. Benoit SC, Clegg DJ, Seeley RJ, Woods SC . Insulin and leptin as adiposity signals. Recent Prog Horm Res 2004; 59: 267–285.

    CAS  PubMed  Google Scholar 

  120. Gettys TW, Harkness PJ, Watson PM . The beta 3-adrenergic receptor inhibits insulin-stimulated leptin secretion from isolated rat adipocytes. Endocrinology 1996; 137: 4054–4057.

    CAS  PubMed  Google Scholar 

  121. Ambrosini G, Nath AK, Sierra-Honigmann MR, Flores-Riveros J . Transcriptional activation of the human leptin gene in response to hypoxia. Involvement of hypoxia-inducible factor 1. J Biol Chem 2002; 277: 34601–34609.

    CAS  PubMed  Google Scholar 

  122. Grosfeld A, Andre J, Hauguel-De Mouzon S, Berra E, Pouyssegur J, Guerre-Millo M . Hypoxia-inducible factor 1 transactivates the human leptin gene promoter. J Biol Chem 2002; 277: 42953–42957.

    CAS  PubMed  Google Scholar 

  123. Grosfeld A, Zilberfarb V, Turban S, Andre J, Guerre-Millo M, Issad T . Hypoxia increases leptin expression in human PAZ6 adipose cells. Diabetologia 2002; 45: 527–530.

    CAS  PubMed  Google Scholar 

  124. Meissner U, Spranger R, Lehner M, Allabauer I, Rascher W, Dotsch J . Hypoxia-induced leptin production in human trophoblasts does not protect from apoptosis. Eur J Endocrinol 2005; 153: 455–461.

    CAS  PubMed  Google Scholar 

  125. Cammisotto PG, Bukowiecki LJ . Mechanisms of leptin secretion from white adipocytes. Am J Physiol Cell Physiol 2002; 283: C244–C250.

    CAS  PubMed  Google Scholar 

  126. Wang B, Wood IS, Trayhurn P . Hypoxia induces leptin gene expression and secretion in human preadipocytes: differential effects of hypoxia on adipokine expression by preadipocytes. J Endocrinol 2008; 198: 127–134.

    CAS  PubMed  Google Scholar 

  127. Yasumasu T, Takahara K, Nakashima Y . Hypoxia inhibits leptin production by cultured rat adipocytes. Obes Res 2002; 10: 128.

    PubMed  Google Scholar 

  128. Weinberger B, Carbone T, England S, Kleinfeld AM, Hiatt M, Hegyi T . Effects of perinatal hypoxia on serum unbound free fatty acids and lung inflammatory mediators. Biol Neonate 2001; 79: 61–66.

    CAS  PubMed  Google Scholar 

  129. Rodrigo J, Fernandez AP, Serrano J, Peinado MA, Martinez A . The role of free radicals in cerebral hypoxia and ischemia. Free Radic Biol Med 2005; 39: 26–50.

    CAS  PubMed  Google Scholar 

  130. Dowling HJ, Fried SK, Pi-Sunyer FX . Insulin resistance in adipocytes of obese women: effects of body fat distribution and race. Metabolism 1995; 44: 987–995.

    CAS  PubMed  Google Scholar 

  131. Nicklas BJ, Rogus EM, Colman EG, Goldberg AP . Visceral adiposity, increased adipocyte lipolysis, and metabolic dysfunction in obese postmenopausal women. Am J Physiol 1996; 270: E72–E78.

    CAS  PubMed  Google Scholar 

  132. Zierath JR, Livingston JN, Thorne A, Bolinder J, Reynisdottir S, Lonnqvist F et al. Regional difference in insulin inhibition of non-esterified fatty acid release from human adipocytes: relation to insulin receptor phosphorylation and intracellular signalling through the insulin receptor substrate-1 pathway. Diabetologia 1998; 41: 1343–1354.

    CAS  PubMed  Google Scholar 

  133. Mittelman SD, Van Citters GW, Kirkman EL, Bergman RN . Extreme insulin resistance of the central adipose depot in vivo. Diabetes 2002; 51: 755–761.

    CAS  PubMed  Google Scholar 

  134. Kang SG, Brown AL, Chung JH . Oxygen tension regulates the stability of insulin receptor substrate-1 (IRS-1) through caspase-mediated cleavage. J Biol Chem 2007; 282: 6090–6097.

    CAS  PubMed  Google Scholar 

  135. Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M, Sul HS . Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am J Physiol Gastrointest Liver Physiol 2007; 293: G1–G4.

    CAS  PubMed  Google Scholar 

  136. Evans RM, Barish GD, Wang YX . PPARs and the complex journey to obesity. Nat Med 2004; 10: 355–361.

    CAS  PubMed  Google Scholar 

  137. Kahn BB, Alquier T, Carling D, Hardie DG . AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005; 1: 15–25.

    CAS  PubMed  Google Scholar 

  138. Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC . Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 2006; 21: 521–531.

    PubMed  PubMed Central  Google Scholar 

  139. Nakatani Y, Kaneto H, Kawamori D, Hatazaki M, Miyatsuka T, Matsuoka T-A et al. Modulation of the JNK pathway in liver affects insulin resistance status. J Biol Chem 2004; 279: 45803–45809.

    CAS  PubMed  Google Scholar 

  140. Jaeschke A, Czech MP, Davis RJ . An essential role of the JIP1 scaffold protein for JNK activation in adipose tissue. Genes Dev 2004; 18: 1976–1980.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Aguirre V, Uchida T, Yenush L, Davis R, White MF . The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 2000; 275: 9047–9054.

    CAS  PubMed  Google Scholar 

  142. Ozawa K, Miyazaki M, Matsuhisa M, Takano K, Nakatani Y, Hatazaki M et al. The endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes. Diabetes 2005; 54: 657–663.

    CAS  PubMed  Google Scholar 

  143. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006; 313: 1137–1140.

    PubMed  PubMed Central  Google Scholar 

  144. Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N et al. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 2002; 22: 7405–7416.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Carriere A, Carmona MC, Fernandez Y, Rigoulet M, Wenger RH, Penicaud L et al. Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect. J Biol Chem 2004; 279: 40462–40469.

    CAS  PubMed  Google Scholar 

  146. Keijer J, van Schothorst EM . Adipose tissue failure and mitochondria as a possible target for improvement by bioactive food components. Curr Opin Lipidol 2008; 19: 4–10.

    CAS  PubMed  Google Scholar 

  147. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 2007; 11: 407–420.

    CAS  PubMed  Google Scholar 

  148. Kim JW, Tchernyshyov I, Semenza GL, Dang CV . HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3: 177–185.

    PubMed  Google Scholar 

  149. Summers LK, Samra JS, Humphreys SM, Morris RJ, Frayn KN . Subcutaneous abdominal adipose tissue blood flow: variation within and between subjects and relationship to obesity. Clin Sci (Lond) 1996; 91: 679–683.

    CAS  Google Scholar 

  150. Jansson PA, Larsson A, Lonnroth PN . Relationship between blood pressure, metabolic variables and blood flow in obese subjects with or without non-insulin-dependent diabetes mellitus. Eur J Clin Invest 1998; 28: 813–818.

    CAS  PubMed  Google Scholar 

  151. Karpe F, Fielding BA, Ilic V, Macdonald IA, Summers LK, Frayn KN . Impaired postprandial adipose tissue blood flow response is related to aspects of insulin sensitivity. Diabetes 2002; 51: 2467–2473.

    CAS  PubMed  Google Scholar 

  152. West DB, Prinz WA, Francendese AA, Greenwood MR . Adipocyte blood flow is decreased in obese Zucker rats. Am J Physiol 1987; 253: R228–R233.

    CAS  PubMed  Google Scholar 

  153. Bolinder J, Kerckhoffs DA, Moberg E, Hagstrom-Toft E, Arner P . Rates of skeletal muscle and adipose tissue glycerol release in nonobese and obese subjects. Diabetes 2000; 49: 797–802.

    CAS  PubMed  Google Scholar 

  154. Kampf C, Bodin B, Kallskog O, Carlsson C, Jansson L . Marked increase in white adipose tissue blood perfusion in the type 2 diabetic GK rat. Diabetes 2005; 54: 2620–2627.

    CAS  PubMed  Google Scholar 

  155. Crandall DL, Goldstein BM, Huggins F, Cervoni P . Adipocyte blood flow: influence of age, anatomic location, and dietary manipulation. Am J Physiol 1984; 247: R46–R51.

    CAS  PubMed  Google Scholar 

  156. Pang C, Gao Z, Yin J, Zhang J, Jia W, Ye J . Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am J Physiol Endocrinol Metab 2008; 295: E313–E322.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Paul M, Poyan Mehr A, Kreutz R . Physiology of local renin–angiotensin systems. Physiol Rev 2006; 86: 747–803.

    CAS  PubMed  Google Scholar 

  158. Carey RM, Siragy HM . Newly recognized components of the renin–angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev 2003; 24: 261–271.

    CAS  PubMed  Google Scholar 

  159. Engeli S, Negrel R, Sharma AM . Physiology and pathophysiology of the adipose tissue renin–angiotensin system. Hypertension 2000; 35: 1270–1277.

    CAS  PubMed  Google Scholar 

  160. Kershaw EE, Flier JS . Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004; 89: 2548–2556.

    CAS  PubMed  Google Scholar 

  161. Goossens GH, McQuaid SE, Dennis AL, van Baak MA, Blaak EE, Frayn KN et al. Angiotensin II: a major regulator of subcutaneous adipose tissue blood flow in humans. J Physiol 2006; 571: 451–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Goossens GH, Blaak EE, Saris WHM, van Baak MA . Angiotensin II-induced effects on adipose and skeletal muscle tissue blood flow and lipolysis in normal-weight and obese subjects. J Clin Endocrinol Metab 2004; 89: 2690–2696.

    CAS  PubMed  Google Scholar 

  163. Henriksen EJ, Jacob S, Kinnick TR, Teachey MK, Krekler M . Selective angiotensin II receptor receptor antagonism reduces insulin resistance in obese Zucker rats. Hypertension 2001; 38: 884–890.

    CAS  PubMed  Google Scholar 

  164. Liu Z . The renin–angiotensin system and insulin resistance. Curr Diab Rep 2007; 7: 34–42.

    PubMed  Google Scholar 

  165. Torres Filho IP, Leunig M, Yuan F, Intaglietta M, Jain RK . Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc Natl Acad Sci USA 1994; 91: 2081–2085.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Helmlinger G, Yuan F, Dellian M, Jain RK . Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 1997; 3: 177–182.

    CAS  PubMed  Google Scholar 

  167. Bluher M, Wilson-Fritch L, Leszyk J, Laustsen PG, Corvera S, Kahn CR . Role of insulin action and cell size on protein expression patterns in adipocytes. J Biol Chem 2004; 279: 31902–31909.

    PubMed  Google Scholar 

  168. Nishimura S, Manabe I, Nagasaki M, Hosoya Y, Yamashita H, Fujita H et al. Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes 2007; 56: 1517–1526.

    CAS  PubMed  Google Scholar 

  169. Gariano RF, Gardner TW . Retinal angiogenesis in development and disease. Nature 2005; 438: 960–966.

    CAS  PubMed  Google Scholar 

  170. Cao Y . Angiogenesis modulates adipogenesis and obesity. J Clin Invest 2007; 117: 2362–2368.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Carmeliet P . Angiogenesis in life, disease and medicine. Nature 2005; 438: 932–936.

    CAS  PubMed  Google Scholar 

  172. Carmeliet P, Jain RK . Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.

    CAS  PubMed  Google Scholar 

  173. Greenberg DA, Jin K . From angiogenesis to neuropathology. Nature 2005; 438: 954–959.

    CAS  PubMed  Google Scholar 

  174. Harris AL . Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2: 38–47.

    CAS  PubMed  Google Scholar 

  175. Semenza GL . HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 2002; 8: S62–S67.

    CAS  PubMed  Google Scholar 

  176. Hausman GJ, Richardson RL . Adipose tissue angiogenesis. J Anim Sci 2004; 82: 925–934.

    CAS  PubMed  Google Scholar 

  177. Fukumura D, Ushiyama A, Duda DG, Xu L, Tam J, Krishna V et al. Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res 2003; 93: e88–e97.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Sierra-Honigmann MR, Nath AK, Murakami C, Garcia-Cardena G, Papapetropoulos A, Sessa WC et al. Biological action of leptin as an angiogenic factor. Science 1998; 281: 1683–1686.

    CAS  PubMed  Google Scholar 

  179. Shibata R, Ouchi N, Kihara S, Sato K, Funahashi T, Walsh K . Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. J Biol Chem 2004; 279: 28670–28674.

    CAS  PubMed  Google Scholar 

  180. Ferrara N, Kerbel RS . Angiogenesis as a therapeutic target. Nature 2005; 438: 967–974.

    CAS  PubMed  Google Scholar 

  181. Neels JG, Thinnes T, Loskutoff DJ . Angiogenesis in an in vivo model of adipose tissue development. FASEB J 2004; 18: 983–985.

    CAS  PubMed  Google Scholar 

  182. Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W . Reversal of obesity by targeted ablation of adipose tissue. Nat Med 2004; 10: 625–632.

    CAS  PubMed  Google Scholar 

  183. Rupnick MA, Panigrahy D, Zhang CY, Dallabrida SM, Lowell BB, Langer R et al. Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci USA 2002; 99: 10730–10735.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Zhang QX, Magovern CJ, Mack CA, Budenbender KT, Ko W, Rosengart TK . Vascular endothelial growth factor is the major angiogenic factor in omentum: mechanism of the omentum-mediated angiogenesis. J Surg Res 1997; 67: 147–154.

    CAS  PubMed  Google Scholar 

  185. Miyazawa-Hoshimoto S, Takahashi K, Bujo H, Hashimoto N, Saito Y . Elevated serum vascular endothelial growth factor is associated with visceral fat accumulation in human obese subjects. Diabetologia 2003; 46: 1483–1488.

    CAS  PubMed  Google Scholar 

  186. Miyazawa-Hoshimoto S, Takahashi K, Bujo H, Hashimoto N, Yagui K, Saito Y . Roles of degree of fat deposition and its localization on VEGF expression in adipocytes. Am J Physiol Endocrinol Metab 2005; 288: E1128–E1136.

    CAS  PubMed  Google Scholar 

  187. Strohl KP, Novak RD, Singer W, Cahan C, Boehm KD, Denko CW et al. Insulin levels, blood pressure and sleep apnea. Sleep 1994; 17: 614–618.

    CAS  PubMed  Google Scholar 

  188. Vgontzas AN, Papanicolaou DA, Bixler EO, Hopper K, Lotsikas A, Lin HM et al. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab 2000; 85: 1151–1158.

    CAS  PubMed  Google Scholar 

  189. Ip MS, Lam B, Ng MM, Lam WK, Tsang KW, Lam KS . Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med 2002; 165: 670–676.

    PubMed  Google Scholar 

  190. Punjabi NM, Sorkin JD, Katzel LI, Goldberg AP, Schwartz AR, Smith PL . Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med 2002; 165: 677–682.

    PubMed  Google Scholar 

  191. Gastaut H, Tassinari CA, Duron B . Polygraphic study of the episodic diurnal and nocturnal (hypnic and respiratory) manifestations of the Pickwick syndrome. Brain Res 1966; 1: 167–186.

    CAS  PubMed  Google Scholar 

  192. Larsen JJ, Hansen JM, Olsen NV, Galbo H, Dela F . The effect of altitude hypoxia on glucose homeostasis in men. J Physiol 1997; 504 (Part 1): 241–249.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Braun B, Rock PB, Zamudio S, Wolfel GE, Mazzeo RS, Muza SR et al. Women at altitude: short-term exposure to hypoxia and/or alpha(1)-adrenergic blockade reduces insulin sensitivity. J Appl Physiol 2001; 91: 623–631.

    CAS  PubMed  Google Scholar 

  194. Polotsky VY, Li J, Punjabi NM, Rubin AE, Smith PL, Schwartz AR et al. Intermittent hypoxia increases insulin resistance in genetically obese mice. J Physiol (Lond) 2003; 552: 253–264.

    CAS  Google Scholar 

  195. Calderon R, Llerena LA, Munive L, Kruger F . Intravenous glucose tolerance test in pregnancy in women living in chronic hypoxia. Diabetes 1966; 15: 130–132.

    CAS  PubMed  Google Scholar 

  196. Davidson MB, Aoki VS . Fasting glucose homeostasis in rats after chronic exposure to hypoxia. Am J Physiol 1970; 219: 378–383.

    CAS  PubMed  Google Scholar 

  197. Iiyori N, Alonso LC, Li J, Sanders MH, Garcia-Ocana A, O’Doherty RM et al. Intermittent hypoxia causes insulin resistance in lean mice independent of autonomic activity. Am J Respir Crit Care Med 2007; 175: 851–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Bulow J, Madsen J . Adipose tissue blood flow during prolonged, heavy exercise. Pflugers Arch 1976; 363: 231–234.

    CAS  PubMed  Google Scholar 

  199. Bulow J . Adipose tissue blood flow during exercise. Dan Med Bull 1983; 30: 85–100.

    CAS  PubMed  Google Scholar 

  200. Mulla NA, Simonsen L, Bulow J . Post-exercise adipose tissue and skeletal muscle lipid metabolism in humans: the effects of exercise intensity. J Physiol 2000; 524 (Part 3): 919–928.

    CAS  PubMed  Google Scholar 

  201. Linde B, Hjemdahl P, Freyschuss U, Juhlin-Dannfelt A . Adipose tissue and skeletal muscle blood flow during mental stress. Am J Physiol 1989; 256: E12–E18.

    CAS  PubMed  Google Scholar 

  202. Engfeldt P, Linde B . Subcutaneous adipose tissue blood flow in the abdominal and femoral regions in obese women: effect of fasting. Int J Obes Relat Metab Disord 1992; 16: 875–879.

    CAS  PubMed  Google Scholar 

  203. Coppack SW, Fisher RM, Gibbons GF, Humphreys SM, McDonough MJ, Potts JL et al. Postprandial substrate deposition in human forearm and adipose tissues in vivo. Clin Sci (Lond) 1990; 79: 339–348.

    CAS  Google Scholar 

  204. Bulow J, Astrup A, Christensen NJ, Kastrup J . Blood flow in skin, subcutaneous adipose tissue and skeletal muscle in the forearm of normal man during an oral glucose load. Acta Physiol Scand 1987; 130: 657–661.

    CAS  PubMed  Google Scholar 

  205. Samra JS, Frayn KN, Giddings JA, Clark ML, Macdonald IA . Modification and validation of a commercially available portable detector for measurement of adipose tissue blood flow. Clin Physiol 1995; 15: 241–248.

    CAS  PubMed  Google Scholar 

  206. Freyschuss U, Hjemdahl P, Juhlin-Dannfelt A, Linde B . Cardiovascular and metabolic responses to low dose adrenaline infusion: an invasive study in humans. Clin Sci (Lond) 1986; 70: 199–206.

    CAS  Google Scholar 

  207. Hjemdahl P, Linde B . Influence of circulating NE and Epi on adipose tissue vascular resistance and lipolysis in humans. Am J Physiol 1983; 245: H447–H452.

    CAS  PubMed  Google Scholar 

  208. Samra JS, Simpson EJ, Clark ML, Forster CD, Humphreys SM, Macdonald IA et al. Effects of epinephrine infusion on adipose tissue: interactions between blood flow and lipid metabolism. Am J Physiol 1996; 271: E834–E839.

    CAS  PubMed  Google Scholar 

  209. Ardilouze J-L, Fielding BA, Currie JM, Frayn KN, Karpe F . Nitric oxide and {beta}-adrenergic stimulation are major regulators of preprandial and postprandial subcutaneous adipose tissue blood flow in humans. Circulation 2004; 109: 47–52.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper was prepared with support by NIH fund (DK68036) and ADA research award (7-07-RA-189) to J Ye.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes 33, 54–66 (2009). https://doi.org/10.1038/ijo.2008.229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.229

Keywords

This article is cited by

Search

Quick links