Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein

Abstract

Calcification of the extracellular matrix (ECM) can be physiological or pathological. Physiological calcification occurs in bone when the soft ECM is converted into a rigid material capable of sustaining mechanical force; pathological calcification can occur in arteries1 and cartilage2 and other soft tissues. No molecular determinant regulating ECM calcification has yet been identified. A candidate molecule is matrix GLA protein (Mgp), a mineral-binding ECM protein3 synthesized by vascular smooth-muscle cells and chondrocytes, two cell types that produce an uncalcified ECM. Mice that lack Mgp develop to term but die within two months as a result of arterial calcification which leads to bloodvessel rupture. Chondrocytes that elaborate a typical cartilage matrix can be seen in the affected arteries. Mgp-deficient mice additionally exhibit inappropriate calcification of various cartilages, including the growth plate, which eventually leads to short stature, osteopenia and fractures. These results indicate that ECM calcification must be actively inhibited in soft tissues. To our knowledge, Mgp is the first inhibitor of calcification of arteries and cartilage to be characterized in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ross, R. Nature 362, 801–809 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Manjin, H. J. & Brandt, K. D. Pathogenesis of Osteoarthritis (eds Kelley, W. N., Harris, E. D., Ruddy, S. & Sledge, C. B.) 1469–1479 (Saunders, Philadelphia, 1989).

    Google Scholar 

  3. Hauschka, P., Lian, J., Cole, D. & Gundberg, C. Physiol. Rev. 69, 990–1047 (1989).

    Article  CAS  Google Scholar 

  4. Furie, B. & Furie, B. C. Cell 53, 505–517 (1988).

    Article  CAS  Google Scholar 

  5. Ducy, P. et al. Nature 382, 448–452 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Dowd, P., Hershline, R., Ham, S. W. & Naganathan, S. Science 269, 1684–1691 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Tanimura, A., McGregor, D. H. & Anderson, H. C. J. Exp. Pathol. 2, 261–273 (1986).

    CAS  PubMed  Google Scholar 

  8. Solursh, M. Cell and Matrix Interactions during Limb Chondrogenesis in Virtol (ed. Trelsted, R. L.) 277–303 (Liss, New York, 1984).

    Google Scholar 

  9. Anderson, H. C. J. Cell Biol. 35, 81 (1967). final page?

    Article  CAS  Google Scholar 

  10. Tanimura, A., McGregor, D. H. & Anderson, H. C. Proc. Soc. Exp. Biol. Med. 172, 173–177 (1983).

    Article  CAS  Google Scholar 

  11. Singleton, E. B. & Merten, D. F. Pediatr. Radiol. 1, 2–7 (1973).

    Article  CAS  Google Scholar 

  12. Qiao, J. H. et al. Arterioscler. Thromb. 14, 1480–1497 (1994).

    Article  CAS  Google Scholar 

  13. O'Brien, K. D. et al. Circulation 92, 2163–2168 (1995).

    Article  CAS  Google Scholar 

  14. Reid, J. D. & Andersen, M. E. Atherosclerosis 101, 213–224 (1993).

    Article  CAS  Google Scholar 

  15. Zhang, M. H., Reddick, R. L., Piedrahita, J. A. & Maeda, N. Science 258, 468–471 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Plump, A. S. et al. Cell 71, 343–353 (1992).

    Article  CAS  Google Scholar 

  17. Nakashima, Y., Plump, A. S., Raines, W., Breslow, J. L. & Ross, R. Arterioscler. Thromb. 14, 133–141 (1994).

    Article  CAS  Google Scholar 

  18. Breslow, J. L. Science 272, 685–688 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Ross, R. & Bornstein, P. Sci. Am. 224, 44–52 (1971).

    Article  CAS  Google Scholar 

  20. Smithies, O. & Maeda, N. Proc. Natl Acad. Sci. USA 92, 5266–5272 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Karaplis, A. C. et al. Genes Dev. 8, 277–289 (1994).

    Article  CAS  Google Scholar 

  22. Vortkamp, A. et al. Science 273, 613–622 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Ramirez-Solis, R., Davis, A. & Bradley, A. Meth. Enzymol. 225, 855–878 (1993).

    Article  CAS  Google Scholar 

  24. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Cell 64, 693–702 (1991).

    Article  CAS  Google Scholar 

  25. McMahon, A. P. & Bradley, A. Cell 62, 1073–1085 (1990).

    Article  CAS  Google Scholar 

  26. Kochhar, D. M. Teratology 7, 289–298 (1973).

    Article  CAS  Google Scholar 

  27. McKee, M. D. & Nanci, A. Microsc. Res. Tech. 33, 141–164 (1996).

    Article  CAS  Google Scholar 

  28. Sundin, O. H., Busse, H. G., Rogers, M. B., Gudas, L. J. & Eichele, G. Development 108, 47–58 (1990).

    CAS  PubMed  Google Scholar 

  29. Wilkinson, D. G. in Situ Hybridization: A Practical Approach (ed. Wilkinson, D. G.) 257–263 (IRL, Oxford, 1992).

    Google Scholar 

  30. Luo, G., D'Souza, R., Hogue, D. & Karsenty, G. J. Bone Min. Res. 10, 325–334 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, G., Ducy, P., McKee, M. et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386, 78–81 (1997). https://doi.org/10.1038/386078a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386078a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing