Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

A genetic blueprint for cardiac development

Abstract

Congenital heart disease is the leading non-infectious cause of death in children. It is becoming increasingly clear that many cardiac abnormalities once thought to have multifactorial aetiologies are attributable to mutations in developmental control genes. The consequences of these mutations can be manifest at birth as life-threatening cardiac malformations or later as more subtle cardiac abnormalities. Understanding the genetic underpinnings of cardiac development has important implications not only for understanding congenital heart disease, but also for the possibility of cardiac repair through genetic reprogramming of non-cardiac cells to a cardiogenic fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of cardiac morphogenesis.
Figure 2: A genetic blueprint for heart development.

Similar content being viewed by others

References

  1. Schultheis, T. M., Xydas, S. & Lassar A. B. Induction of avian cardiac myogenesis by anterior endoderm . Development 121, 4203– 4214 (1995).

    Google Scholar 

  2. Harvey, R. P. NK-2 homeobox genes and heart development. Dev. Biol. 178, 203–216 (1996).

    Article  CAS  Google Scholar 

  3. Gajewski, K., Kim, Y., Lee, Y. M., Olson, E. N. & Schulz, R. A. D-Mef2: a target for tinman activation during Drosophila heart development. EMBO J. 16, 515–522 (1998).

    Article  Google Scholar 

  4. Durocher, D., Charron, F., Warren, R., Schwartz, R. J. & Nemer, M. The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J. 16, 5687– 5696 (1997).

    Article  CAS  Google Scholar 

  5. Schwartz, R. J. & Olson, E. N. Building the heart piece by piece: modularity of cis elements regulating Nkx2.5 transcription. Development 126, 4187– 4192 (1999).

    CAS  PubMed  Google Scholar 

  6. Fu, Y., Yan, W., Mohun, T. J. & Evans, S. M. Vertebrate tinman homologues XNkx2-3 and XNkx2-5 are required for heart formation in a functionally redundant manner. Development 125, 4439– 4449 (1998).

    CAS  Google Scholar 

  7. Grow, M. W. & Kreig, P. A. Tinman function is essential for vertebrate heart development: elimination of cardiac differentiation by dominant inhibitory mutants of the tinman-related genes, XNkx2-3 and XNkx2-5. Dev. Biol. 204, 187–196 (1998).

    Article  CAS  Google Scholar 

  8. Molkentin, J., Lin, Q., Duncan, S. A. & Olson, E. N. Requirement of the GATA4 transcription factor for heart tube formation and ventral morphogenesis . Genes Dev. 11, 1061–1072 (1997).

    Article  CAS  Google Scholar 

  9. Kuo, C. T. et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11, 1048–1060 (1997).

    Article  CAS  Google Scholar 

  10. Reiter, J. F. et al. Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev. 13, 2983–2995 (1999).

    Article  CAS  Google Scholar 

  11. Capdevila, J., Vogan, K. J., Tabin, C. J. & Belmonte, J. C. Mechanisms of left–right determination in vertebrates. Cell 101, 9–21 ( 2000).

    Article  CAS  Google Scholar 

  12. Hyer, J. et al. Induction of Purkinje fiber differentiation by coronary arterialization . Proc. Natl Acad. Sci. USA 96, 13214– 13218 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Srivastava, D., Cserjesi, P. & Olson, E. N. New subclass of bHLH proteins required for cardiac morphogenesis. Science 270, 1995– 1999 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Srivastava, D. et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nature Genet. 16, 154–160 (1997).

    Article  CAS  Google Scholar 

  15. Firulli, A. B., McFadden, D. G., Lin, Q., Srivastava, D. & Olson, E. N. Heart and extra embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Nature Genet. 8, 266–270 ( 1998).

    Article  Google Scholar 

  16. Riley, P., Anson-Cartwright, L. & Cross, J. C. The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nature Genet. 18, 271–275 (1998).

    Article  CAS  Google Scholar 

  17. Biben, C. & Harvey, R. P. Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev. 11, 1357– 1369 (1997).

    Article  CAS  Google Scholar 

  18. Bao, Z., Bruneau, B. G., Seidman, J. G., Seidman, C. E. & Cepko, C. L. Regulation of chamber-specific gene expression in the developing heart by Irx4. Science 283, 1161–1164 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Bruneau, B. G. et al. Cardiac expression of the ventricle-specific homeobox gene Irx4 is modulated by Nkx2-5 and dHand. Dev. Biol. 217, 266–277 (2000).

    Article  CAS  Google Scholar 

  20. Yelon, D. et al. Parallel roles for the bHLH transcription factor HAND2 in zebrafish and pectoral fin development. Development 127, 2573–2582 (2000).

    CAS  Google Scholar 

  21. Lin, Q., Schwarz, J., Bucana, C. & Olson, E. N. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science. 276, 1404–1407 (1997).

    Article  CAS  Google Scholar 

  22. Pereira, F. A., Qui, Y., Zhou, G., Tsai, M. & Tsai, S. The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev. 13, 1037– 1049 (1999).

    Article  CAS  Google Scholar 

  23. Dyson, E. et al. Atrial-like phenotype is associated with embryonic ventricular failure in retinoid X receptor alpha−/− mice. Proc. Natl Acad. Sci. USA 92, 7386–7390 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Lee, K. F. et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378, 394– 398 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Suri, C. et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180 (1996).

    Article  CAS  Google Scholar 

  27. Brown, C. B., Boyer, A. S., Runyan, R. B. & Barnett, J. V. Requirement of type III TGF beta receptor for endocardial cell transformation in the heart. Science 283, 2080– 2082 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Ranger, A. M. et al. The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392, 186– 190 (1998).

    Article  ADS  CAS  Google Scholar 

  29. De la Pompa, J. L. et al. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392, 182 –186 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Galvin, K. M. et al. A role for smad6 in development and homeostasis of the cardiovascular system. Nature Genet. 24, 171– 174 (2000).

    Article  CAS  Google Scholar 

  31. Kirby, M. L. & Waldo, K. L. Neural crest and cardiovascular patterning. Circ. Res. 77, 211– 215 (1995).

    Article  CAS  Google Scholar 

  32. Kurihara, Y. et al. Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J. Clin. Invest. 96 , 293–300 (1995).

    Article  CAS  Google Scholar 

  33. Clouthier, D. E. et al. Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development 125, 813– 824 (1998).

    CAS  PubMed  Google Scholar 

  34. Thomas, T. et al. A signaling cascade involving endothelin-1, dHAND and Msx1 regulates development of neural crest-derived branchial arch mesenchyme. Development 125, 3005–3014 (1998).

    CAS  PubMed  Google Scholar 

  35. Yamagishi, H., Olson, E. N. & Srivastava, D. The bHLH transcription factor, dHAND, is required for vascular development. J. Clin. Invest. 105, 261–270 (2000).

    Article  CAS  Google Scholar 

  36. Kawasaki, T. et al. A requirement for neuropilin-1 in embryonic vessel formation . Development 126, 4854– 4902 (1999).

    Google Scholar 

  37. Iida, K. et al. Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis. Development 124, 4627–4638 (1997).

    CAS  PubMed  Google Scholar 

  38. Li, J., Liu, K. C., Jin, F., Lu, M. M. & Epstein, J. A. Transgenic rescue of congenital heart disease and spina bifida in Splotch mice. Development 126, 2495–2503 (1999).

    CAS  PubMed  Google Scholar 

  39. Gruber, P. J. et al. RXR alpha deficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice. J. Clin. Inv. 98, 1332– 1343 (1996).

    Article  CAS  Google Scholar 

  40. Zhong, T. P., Rosenberg, M., Mohideen, M. A., Weinstein, B. & Fishman, M. C. Gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287 , 1820–1824 (2000).

    Article  ADS  CAS  Google Scholar 

  41. Satoda, M. et al. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nature Genet. 25, 42–46 (2000).

    Article  CAS  Google Scholar 

  42. Emanuel, B. S., Budarf, M. L., & Scambler, P. J. in Heart Development (eds Harvey, R. P. & Rosenthal, N.) 463–478 (Academic, New York, 1998).

    Google Scholar 

  43. Lindsay, E. A. et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 401, 379– 383 (1999).

    ADS  CAS  Google Scholar 

  44. Yamagishi, H., Garg, V., Matsuoka, R., Thomas, T. & Srivastava, D. A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects. Science 283, 1158–1161 (1999).

    Article  ADS  CAS  Google Scholar 

  45. Schott, J.-J. et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281, 108– 111 (1998).

    Article  ADS  CAS  Google Scholar 

  46. Benson, D. W. et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J. Clin. Invest. 104, 1567–1573 (1999).

    Article  CAS  Google Scholar 

  47. Basson, C. T. et al. Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nature Genet. 15, 30–35 (1997).

    Article  CAS  Google Scholar 

  48. Li, Q. Y. et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nature Genet. 15, 21–29 (1997).

    Article  Google Scholar 

  49. Basson, C. T. et al. Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc. Natl Acad. Sci. USA 96, 2919–2924 (1999).

    Article  ADS  CAS  Google Scholar 

  50. Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nature Genet. 16, 243–251 (1997).

    Article  CAS  Google Scholar 

  51. Oda, T., Elkahloun, A. G. & Pike, B. L. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nature Genet. 16, 235–242 (1997).

    Article  CAS  Google Scholar 

  52. Krantz, I. D. et al. Jagged1 mutations in patients ascertained with isolated congenital heart defects. Am. J. Hum. Genet. 84, 56 –60 (1999).

    Article  CAS  Google Scholar 

  53. Curran, M. E. et al. The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis. Cell 73, 159–168 (1993).

    Article  CAS  Google Scholar 

  54. Dietz, H. C. et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352, 279– 281 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

D.S. is supported by grants from NIH, American Heart Association, March of Dimes and Smile Train. E.N.O. is supported by grants from NIH, Muscular Dystrophy Association, The Robert A. Welch Foundation and the D. W. Reynolds Foundation. The authors thank R. Sahadi and S. Johnson for assistance with graphics.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, D., Olson, E. A genetic blueprint for cardiac development. Nature 407, 221–226 (2000). https://doi.org/10.1038/35025190

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35025190

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing