Skip to main content
Log in

Cyanobacterial dominance in lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Cyanobacterial dominance in lakes has received much attention in the past because of frequent bloom formation in lakes of higher trophic levels. In this paper, underlying mechanisms of cyanobacterial dominance are analyzed and discussed using both original and literature data from various shallow mixed and deep stratifying lakes from temperate and (sub)tropical regions. Examples include all four ecotypes of cyanobacteria sensu Mur et al. (1993), because their behavior in the water column is entirely different. Colony forming species (Microcystis) are exemplified from the large shallow Tai Hu, China. Data from a shallow urban lake, Alte Donau in Austria are used to characterize well mixed species (Cylindrospermopsis), while stratifying species (Planktothrix) are analyzed from the deep alpine lake Mondsee. Nitrogen fixing species (Aphanizomenon) are typified from a shallow river-run lake in Germany. Factors causing the dominance of one or the other group are often difficult to reveal because several interacting factors are usually involved which are not necessarily the same in different environments. Strategies for restoration, therefore, depend on both the cyanobacterial species involved and the specific causing situation. Some uncertainty about the success of correctives, however, will remain due to the stochastic nature of the events and pathways leading to cyanobacterial blooms. Truly integrated research programs are required to generate predictive models capable of quantifying key variables at appropriate spatial and temporal scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agusti, S. & E. J. Phlips, 1991. Light absorption by cyanobacteria: Implications of the colonial growth form. Limnol. Oceanogr. 37: 434–441.

    Google Scholar 

  • Ahlgren, I., 1993. Scientific basis for the application of in-lake ecotechnologies in eutrophication control. In Giussani, G. & C. Callieri (eds), Strategies for Lake Ecosystems Beyond 2000. Proc. 5th Int. Conf. Conservation and management of Lakes, Stresa 993: 23–25.

  • Andersen, T., 1997. Pelagic nutrient cycles. Herbivores as sources and sinks. Springer Verlag, Berlin, Heidelberg, New York: 280 pp.

    Google Scholar 

  • Berg, K., O. M. Skulberg, R. Skulberg, B. Underdal & T. Willen, 1986. Observations of toxic blue-green algae (Cyanobacteria) in some Scandinavian lakes. Acta Vet. Scand. 27: 440–452.

    Google Scholar 

  • Blomqvist, P., A. Pettersson & P. Hyenstrand, 1994. Ammoniumnitrogen: A key regulatory factor causing dominance of nonnitrogen-fixing cyanobacteria in aquatic systems. Arch. Hydrobiol. 132: 141–164.

    Google Scholar 

  • Bryant, D. A. (ed.), 1994. The Molecular Biology of Cynaobacteria. Kluwer Academic Publishers, Dordrecht, Boston, London: 881 pp.

    Google Scholar 

  • Burns, C.W., 1987. Insight into zooplankton-cyanobacteria interactions derived from enclosure experiments. New Zealand J. mar. Freshwat. Res. 21: 477–482.

    Google Scholar 

  • Cai, Q., X. Gao, Y. Chen, S. Ma & M. Dokulil, 1994. Dynamic variations of water quality in Lake Tai Hu and multivariate analysis of its influential factors. In Sund, H. H.-H. Stabel, W. Geller, X. Yu, K. Yuan & F. She (eds), Environmental Protection and Lake Ecosystem. Proc. Int. Symp.Wuxi March 27-April 1, 1993, China Science and Technology Press, Nanjing: 217–230.

    Google Scholar 

  • Chorus, I., 1993. Algal metabolites and water quality: Toxins, allergens, and taste-and-odor problems. In Giussani, G. & C. Callieri (eds), Strategies for Lake Ecosystems Beyond 2000. Proc. 5th Int. Conf. Conservation and management of Lakes, Stresa 1993: 570–572.

  • Chorus, I., 1995. Cyanobakterientoxine: Kenntnisstand und Forschungsprogramme. Dt. Ges. Limnol. (DGL), Tagungsberichte 1995 (Berlin): Krefeld 1996: 269–280.

    Google Scholar 

  • Dokulil, M., 1993. Long-term response of phytoplankton population dynamics to oligotrophication in Mondsee, Austria. Verh. int. Ver. Limnol. 25: 657–661.

    Google Scholar 

  • Dokulil, M. T. & A. Jagsch, 1992. Dynamics of phosphorus and nitrogen loading and its effects on phytoplankton in Mondsee, Austria. Hydrobiologia 243/244 (Dev. Hydrobiol. 79): 389–394.

    Google Scholar 

  • Dokulil, M. T. & J. Mayer, 1996. Population dynamics and photosynthetic rates of a Cylindrospermopsis-Limnothrix association in a highly eutrophic urban lake, Alte Donau, Vienna, Austria. Algol. Stud. 83: 179–195.

    Google Scholar 

  • Dokulil, M. & C. Skolaut, 1986. Succession of phytoplankton in a deep stratifying lake: Mondsee, Austria. Hydrobiologia 138: 9–24.

    Google Scholar 

  • Elser, J. J., 1999. The pathway to noxious cyanobacteria blooms in lakes: the food web as the final turn. Freshwat. Biol. 42: 537–543.

    Google Scholar 

  • Findenegg, I., 1971. Unterschiedliche Formen der Eutrophierung von Ostalpenseen. Schweiz. Z. Hydrol. 33: 85–95.

    Google Scholar 

  • Forsberg, C. & S. O. Ryding, 1980. Eutrophication parameters and trophic state indicies in 30 waste-receiving Swedish lakes. Arch. Hydrobiol. 69: 189–207.

    Google Scholar 

  • Fott, J., L. Pechar & M. Prazakova 1980. Fish as a factor controlling water quality in ponds. In Barica, J. & L. R. Mur (eds), Hypertrophic Ecosystems. Developments in Hydrobiology 2. Dr W. Junk Publishers, The Hague: 255–261.

    Google Scholar 

  • Foy, R. H. & C. E. Gibson, 1982. Photosynthetic characteristics of planktonic blue-green algae: the response of 20 strains grown under high and low light. Br. phycol. J. 17: 169–182.

    Google Scholar 

  • Foy, R. H., C. E. Gibson & R. V. Smith, 1976. The influence of daylength, light intensity and temperature on the growth rates of planktonic blue-green algae. Br. phycol. J. 11: 151–163.

    Google Scholar 

  • Haney, J. F., 1987. Field studies on zooplankton-cyanobacteria interactions. New Zealand J. mar. Freshwat. Res. 21: 467–475.

    Google Scholar 

  • Humphries, S. E. & V. D. Lyne, 1988. Cyanophyte blooms: the role of cell buoyancy. Limnol. Oceanogr. 33: 79–91.

    Google Scholar 

  • Hyenstrand, P., P. Blomquist & A. Pettersson, 1998. Factors determining cyanobacterial success in aquatic systems-a literature review. Arch. Hydrobiol., Spec. Issues Advanc. Limnol. 51: 41–62.

    Google Scholar 

  • Ibelings, B. W., 1992. Cyanobacterial water blooms: the role of buoyancy in water columns of varying stability. Thesis Univ. Amsterdam: 171 pp.

  • Istvánovics, V., H. M. Shafik, M. Présing & S. Juhos, 2000. Growth and phosphate uptake kinetics of the cyanobacterium Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshwat. Biol. 43: 257–275.

    Google Scholar 

  • Jackson, D. F., 1984. Ecological factors governing blue-green algal blooms. Purdue Univ. Extension, Serie 117: 402–420.

    Google Scholar 

  • Jones, G. J. (ed.), 1994. Cyanobacterial Research in Australia. Aust. J. mar. Freshwat. Res. 45: 731–915.

  • Keating, K. I., 1978. Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199: 971–973.

    Google Scholar 

  • King, D. L., 1980. The role of carbon in eutrophication. J. Wat. Pollut. Cont. Fed. 42: 2035–2051.

    Google Scholar 

  • Klemer, A. R., 1976. The vertical distribution of Oscillatoria agardhii var. isothrix. Arch Hydrobiol. 78: 343–362.

    Google Scholar 

  • Konopka, A., 1982. Physiological ecology of a metalimnetic Oscillatoria rubescens population. Limnol. Oceanogr. 27: 1154–1161.

    Google Scholar 

  • Konopka, A., 1989. Metalimnetic cyanobacteria in hard-water lakes: buoyancy regulation and physiological state. Limnol. Oceanogr. 34: 1174–1184.

    Google Scholar 

  • Kromkamp, J. & A. E. Walsby, 1990. A computer model of buoyancy and vertical migration in cyanobacteria. J. Plankton Res. 12: 161–183.

    Google Scholar 

  • Lampert, W., 1987. Laboratory studies on zooplanktoncyanobacteria interactions. New Zealand J. mar. Freshwat. Res. 21: 483–490.

    Google Scholar 

  • Lindholm, T., J. E. Eriksson & J. A. O. Meriluoto, 1989. Toxic cyanobacteria and water quality problems. Examples from a eutrophic lake on Aland, South West Finland. Wat. Res. 23: 481–486.

    Google Scholar 

  • Mason, C. F., 1991. Biology of freshwater pollution. 2nd edn. Longman Sci. & Tech., Essex: 351 pp.

    Google Scholar 

  • Mayer, J., M. T. Dokulil, M. Salbrechter, M. Berger, T. Posch, G. Pfister, A. K. T. Kirschner, B. Velimirov, A. Steitz & T. Ulbricht, 1997. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliophora and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia 342/343 (Dev. Hydrobiol. 119): 165–174.

    Google Scholar 

  • McQueen, D. J. & D. R. S. Lean, 1987. Influence of water temperature and nitrogen to phosphorus ratios on the dominance of blue-green algae in Lake St. George, Ontario. Can. J. Fish. aquat. Sci. 44: 598–604.

    Google Scholar 

  • Mur, L. R., H. Schreurs & P. Visser, 1993. How to control undesirable cyanobacterial dominance. In Giussani, G. & C. Callieri (eds), Strategies for Lake Ecosystems Beyond 2000 Proc. 5th Int. Conf. Conservation and management of Lakes, Stresa 1993: 565–569.

  • Murphy, T. P., D. R. S. Lean & C. Nalewajko, 1976. Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae. Science 192: 900–902.

    Google Scholar 

  • Niklisch, A. & J.-G. Kohl, 1989. The influence of light on the primary production of two planktic blue-green algae. Arch. Hydrobiol., Ergeb. Limnol. 33: 451–455.

    Google Scholar 

  • Perrow, M. R., M.-L. Meijer, P. Dawidowicz & H. Coops, 1997. Biomanipulation in shallow lakes: state of the art. Hydrobiologia 342/343 (Dev. Hydrobiol. 119): 355–365.

    Google Scholar 

  • Pettersson, K., E. Herlitz & V. Istvanovics, 1993. The role of Gloeotrichis echinulata in the transfer of phosphorus from sediments to water in Lake Erken. Hydrobiologia 253: 123–129.

    Google Scholar 

  • Pizzolon, L., B. Tracanna, C. Prósperi & J. M. Guerrero, 1999. Cyanobacterial blooms in Argentinean inland waters. Lakes & Reservoirs 4: 101–105.

    Google Scholar 

  • Porter, K. G., 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.

    Google Scholar 

  • Reuter, J. G. & R. R. Petersen, 1987. Micronutrient effects on cynobacterial growth and physiology. New Zealand J. mar. Freshwat. Res. 21: 435–445.

    Google Scholar 

  • Reynolds, C. S., 1987. Cyanobacterial water-blooms. In Callow, P. (ed.), Advances in Botanical Research 13. Academic Press, London: 67–143.

    Google Scholar 

  • Reynolds, C. S., 1991. Toxic blue-green algae: the problem in perspective. Freshwat. For. 1: 29–38.

    Google Scholar 

  • Reynolds, C. S., R. L. Oliver & A. E. Walsby, 1987. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. New Zealand J. mar. Freshwat. Res. 21: 379–390.

    Google Scholar 

  • Ridge, I., J. Walters & M. Street, 1999. Algal growth control by terrestrial leaf litter: a realistic tool? Hydrobiologia 395/396 (Dev. Hydrobiol. 136): 173–180.

    Google Scholar 

  • Robarts, R. S., 1985. Hypertrophy, a consequence of development. Int. J. envir. Stud. 12: 72–89.

    Google Scholar 

  • Robarts, R. S. & T. Zohary, 1987. Temperature effects on photosynthetic capacity, respiration and growth rates of bloom-forming cyanobacteria. New Zealand J. mar. Freshwat. Res. 21: 391–399.

    Google Scholar 

  • Rönicke, H., H. Klapper & M. Beyer, 1993. Control of phosphorus and blue-greens by nutrient preipitation: long-term case study. In Giussani, G. & C. Callieri (eds), Strategies for Lake Ecosystems Beyond 2000. Proc. 5th Int. Conf. Conservation and Management of Lakes, Stresa 1993: 177–179.

  • Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. H. Van Nes, 1997. On the dominance of filamentous cyanobacteria in shallow turbid lakes. Ecology 78: 272–282.

    Google Scholar 

  • Schreurs, H., 1992. Cyanobacterial dominance. Relations to eutrophication and lake morphology. Doctoral thesis, Univ. Amsterdam: 198 pp.

  • Shapiro, J., 1984. Blue-green dominance in lakes: the role and management significance of pH and CO2. Int. Rev. ges. Hydrobiol. 69: 765–780.

    Google Scholar 

  • Shapiro, J., 1990. Current beliefs regarding dominance of bluegreens: the case for the importance of CO2 and pH. Verh. int. Ver. Limnol. 24: 38–54.

    Google Scholar 

  • Shapiro, J., 1997. The role of carbon dioxide in the initiation and maintenance of blue-green dominance in lakes. Freshwat. Biol. 37: 307–323.

    Google Scholar 

  • Sigee, D. C., R. Glenn, M. J. Andrews, E. G. Bellinger, R. D. Butler, H. A. S. Epton & R. D Hendry, 1999. Biological control of cyanobacteria: principles and possibilities. Hydrobiologia 395/396 (Dev. Hydrobiol. 136): 161–172.

    Google Scholar 

  • Smith, V. H., 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669–671.

    Google Scholar 

  • Smith, V. H., E. Willén & B. Karlsson, 1987. Predicting the summer peak biomass of four species of blue-green algae (Cyanophyta/Cyanobacteria) in Swedish lakes. Wat. Res. Bull. 23: 397–402.

    Google Scholar 

  • Spencer, C. N. & D. L. King, 1989. Role of light, carbon dioxide and nitrogen in regulation of buoyancy, growth and bloom formation of Anabaena flos-aquae. J. Plankton Res. 11: 283–296.

    Google Scholar 

  • Stanier, R. Y. & G. Cohen-Bazire, 1977. Phototrophic prokaryotes: The Cyanobacteria. Ann. Rev. Microbiol. 31: 225–274.

    Google Scholar 

  • Steinberg, Ch. & H. Hartmann, 1988a. Planktische blütenbildende Cyanobakterien (Blaualgen) und die Eutrophierung von Seen und Flüssen. Vom Wasser 70: 1–10.

    Google Scholar 

  • Steinberg, Ch. E. W. & H. M. Hartmann, 1988b. Planktonic bloomforming cyanobacteria and the eutrophication of lakes and rivers. Freshwat. Biol. 20: 279–287.

    Google Scholar 

  • Teubner, K., 1996. Struktur und Dynamik des Phytoplanktons in Beziehung zur Hydrochemie und Hydrophysik der Gewässer. Eine multivariate statistische Analyse an ausgewählten Gewässern der Region Berlin-Brandenburg. Diss. Humboldt-Univ. Berlin: 231 pp.

    Google Scholar 

  • Teubner, K., 2000. Synchronised changes of planktonic and diatom assemblages in North German waters reduce seasonality to two principal periods. Arch. Hydrobiol. Spec. Issues Adv. Limnol. 55: 565–580.

    Google Scholar 

  • Teubner, K., R. Feyerabend, M. Henning, A. Nicklisch, P. Woitke & J.-G. Kohl, 1997. Alternative blooming of Aphanizomenon flos-aquae or Planktothrix agardhii induced by the timing of the critical nitrogen:phosphorus ratio in hypertrophic riverine lakes. Arch. Hydrobiol., Adv. Limnol 54: 325–344.

    Google Scholar 

  • Teubner, K., K. Donabaum, W. Kabas, A. Kirschner, G. Pfister, M. Salbrechter & M. T. Dokulil, 1999. What are the differential consequences on components of a planktonic food web induced by in-lake restoration of a shallow urban seepage lake? Proceedings of the 8th Int. Conf. on Conservation and Management of Lakes, Lake 1999, Sustainable Lake Management, Kopenhagen, Vol. II: S8A-6.

    Google Scholar 

  • Tilman, D. & R. L. Kiesling, 1984. Freshwater algal ecology: taxonomic tradeoffs in the temperature dependence of nutrient competitive abilities. In Klug, M. J. & V. A. Reddy (eds), Current Problems in Microbial Ecology. Proc. 3rd Int. Symp. Microbial Ecol. Am. Soc. Microbiol, Washington, D.C.

  • Trimbee, A. M. & G. P. Harris, 1984. Phytoplankton dynamics of a small reservoir: use of sedimentation traps to quantify the loss of diatoms and recruitment of summer bloom-forming blue-green algae. J. Plankton Res. 5: 897–918.

    Google Scholar 

  • Trimbee, A. M. & E. E. Prepas, 1988. The effect of oxygen depletion on the timing and magnitude of blue-green algal blooms. Verh. int. Ver. Limnol. 23: 220–226.

    Google Scholar 

  • Walsby, A. E., 1987. Cyanobacteria: planktonic gas-vacuolated forms. In Starr, M., H. Stolp, H. Truper, A. Balows & H. G. Schlegel (eds), The Prokaryotes. Springer Verlag, New York: 224–235.

    Google Scholar 

  • Zevenboom, W. & L. R. Mur, 1980. N2-fixing cyanobacteria: why they do not become dominant in Dutch hypertrophic lakes. In Barica, J. & L. R. Mur (eds), Hypertrophic Ecosystems. Developments in Hydrobiology 2. Dr W. Junk Publishers The Hague: 123–130.

  • Zimmermann, U., 1969. Ökologische und physiologische Untersuchungen an der planktischen Blaualge Oscillatoria rubescens D.C. unter besonderer Berücksichtigung von Licht und Temperatur. Schweiz. Z. Hydrol. 31: 1–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dokulil, M.T., Teubner, K. Cyanobacterial dominance in lakes. Hydrobiologia 438, 1–12 (2000). https://doi.org/10.1023/A:1004155810302

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004155810302

Navigation