Skip to main content
Log in

Drug-Induced Hyperkalemia

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Hyperkalemia is a common clinical condition that can be defined as a serum potassium concentration exceeding 5.0 mmol/L. Drug-induced hyperkalemia is the most important cause of increased potassium levels in everyday clinical practice. Drug-induced hyperkalemia may be asymptomatic. However, it may be dramatic and life threatening, posing diagnostic and management problems. A wide range of drugs can cause hyperkalemia by a variety of mechanisms. Drugs can interfere with potassium homoeostasis either by promoting transcellular potassium shift or by impairing renal potassium excretion. Drugs may also increase potassium supply. The reduction in renal potassium excretion due to inhibition of the renin-angiotensin-aldosterone system represents the most important mechanism by which drugs are known to cause hyperkalemia. Medications that alter transmembrane potassium movement include amino acids, beta-blockers, calcium channel blockers, suxamethonium, and mannitol. Drugs that impair renal potassium excretion are mainly represented by angiotensin-converting enzyme inhibitors, angiotensin-II receptor blockers, direct renin inhibitors, nonsteroidal anti-inflammatory drugs, calcineurin inhibitors, heparin and derivatives, aldosterone antagonists, potassium-sparing diuretics, trimethoprim, and pentamidine. Potassium-containing agents represent another group of medications causing hyperkalemia. Increased awareness of drugs that can induce hyperkalemia, and monitoring and prevention are key elements for reducing the number of hospital admissions, morbidity, and mortality related to drug-induced hyperkalemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Sood MM, Sood AR, Richardson R. Emergency management and commonly encountered outpatient scenarios in patients with hyperkalemia. Mayo Clin Proc. 2007;82(12):1553–61.

    Article  PubMed  Google Scholar 

  2. Evans KJ, Greenberg A. Hyperkalemia: a review. J Intensive Care Med. 2005;20(5):272–90.

    Article  PubMed  Google Scholar 

  3. Perazella MA. Drug-induced hyperkalemia: old culprits and new offenders. Am J Med. 2000;109(4):307–14.

    Article  CAS  PubMed  Google Scholar 

  4. Miltiadous G, Mikhailidis DP, Elisaf M. Acid-base and electrolyte abnormalities observed in patients receiving cardiovascular drugs. J Cardiovasc Pharmacol Ther. 2003;8(4):267–76.

    Article  CAS  PubMed  Google Scholar 

  5. Passare G, Viitanen M, Torring O, Winblad B, Fastbom J. Sodium and potassium disturbances in the elderly: prevalence and association with drug use. Clin Drug Investig. 2004;24(9):535–44.

    Article  CAS  PubMed  Google Scholar 

  6. Noize P, Bagheri H, Durrieu G, Haramburu F, Moore N, Giraud P, et al. Life-threatening drug-associated hyperkalemia: a retrospective study from laboratory signals. Pharmacoepidemiol Drug Saf. 2011;20(7):747–53.

    Article  CAS  PubMed  Google Scholar 

  7. Banerjee A, Stoica C, Walia A. Acute hyperkalemia as a complication of intravenous therapy with epsilon-aminocaproic acid. J Clin Anesth. 2011;23(7):565–8.

    Article  PubMed  Google Scholar 

  8. Barone R, Pauwels S, De Camps J, Krenning EP, Kvols LK, Smith MC, et al. Metabolic effects of amino acid solutions infused for renal protection during therapy with radiolabelled somatostatin analogues. Nephrol Dial Transplant. 2004;19(9):2275–81.

    Article  CAS  PubMed  Google Scholar 

  9. Giovacchini G, Nicolas G, Freidank H, Mindt TL, Forrer F. Effect of amino acid infusion on potassium serum levels in neuroendocrine tumour patients treated with targeted radiopeptide therapy. Eur J Nucl Med Mol Imaging. 2011;38(9):1675–82.

    Article  CAS  PubMed  Google Scholar 

  10. Hertz P, Richardson JA. Arginine-induced hyperkalemia in renal failure patients. Arch Intern Med. 1972;130(5):778–80.

    Article  CAS  PubMed  Google Scholar 

  11. Brass EP, Thompson WL. Drug-induced electrolyte abnormalities. Drugs. 1982;24(3):207–28.

    Article  CAS  PubMed  Google Scholar 

  12. Carroll HJ, Tice DA. The effects of epsilon amino-caproic acid upon potassium metabolism in the dog. Metabolism. 1966;15(5):449–57.

    Article  CAS  PubMed  Google Scholar 

  13. Nzerue CM, Falana B. Refractory hyperkalaemia associated with use of epsilon-aminocaproic acid during coronary bypass in a dialysis patient. Nephrol Dial Transplant. 2002;17(6):1150–1.

    Article  PubMed  Google Scholar 

  14. Lundborg P. The effect of adrenergic blockade on potassium concentrations in different conditions. Acta Med Scand Suppl. 1983;672:121–6.

    CAS  PubMed  Google Scholar 

  15. Sica DA. Antihypertensive therapy and its effects on potassium homeostasis. J Clin Hypertens (Greenwich). 2006;8(1):67–73.

    Article  CAS  Google Scholar 

  16. Bethune DW, McKay R. Paradoxical changes in serum-potassium during cardiopulmonary bypass in association with non-cardioselective beta blockade. Lancet. 1978;2(8085):380.

    Article  CAS  PubMed  Google Scholar 

  17. Swenson ER. Severe hyperkalemia as a complication of timolol, a topically applied beta-adrenergic antagonist. Arch Intern Med. 1986;146(6):1220–1.

    Article  CAS  PubMed  Google Scholar 

  18. McCauley J, Murray J, Jordan M, Scantlebury V, Vivas C, Shapiro R. Labetalol-induced hyperkalemia in renal transplant recipients. Am J Nephrol. 2002;22(4):347–51.

    Article  PubMed  Google Scholar 

  19. Castellino P, Simonson DC, DeFronzo RA. Adrenergic modulation of potassium metabolism during exercise in normal and diabetic humans. Am J Physiol. 1987;252(1 Pt 1):E68–76.

    CAS  PubMed  Google Scholar 

  20. Arthur S, Greenberg A. Hyperkalemia associated with intravenous labetalol therapy for acute hypertension in renal transplant recipients. Clin Nephrol. 1990;33:269–71.

    CAS  PubMed  Google Scholar 

  21. Ben Salem C, Hmouda H, Bouraoui K. Drug-induced hypokalaemia. Curr Drug Saf. 2009;4(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  22. Rasmussen L, Husted SE, Johnsen SP. Severe intoxication after an intentional overdose of amlodipine. Acta Anaesthesiol Scand. 2003;47(8):1038–40.

    Article  CAS  PubMed  Google Scholar 

  23. Imamura T, Matsuura Y, Nagoshi T, Ishikawa T, Date H, Kita T, et al. Hyperkalemia induced by the calcium channel blocker, benidipine. Intern Med. 2003;42(6):503–6.

    Article  PubMed  Google Scholar 

  24. Freed MI, Rastegar A, Bia MJ. Effects of calcium channel blockers on potassium homeostasis. Yale J Biol Med. 1991;64(2):177–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Martyn JA, Richtsfeld M. Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology. 2006;104(1):158–69.

    Article  CAS  PubMed  Google Scholar 

  26. Gronert GA. Succinylcholine-induced hyperkalemia and beyond. 1975. Anesthesiology. 2009;111(6):1372–7.

    Article  PubMed  Google Scholar 

  27. Buckley MS, Leblanc JM, Cawley MJ. Electrolyte disturbances associated with commonly prescribed medications in the intensive care unit. Crit Care Med. 2010;38(6 Suppl):S253–64.

    Article  CAS  PubMed  Google Scholar 

  28. Fenton F, Smally AJ, Laut J. Hyperkalemia and digoxin toxicity in a patient with kidney failure. Ann Emerg Med. 1996;28(4):440–1.

    Article  CAS  PubMed  Google Scholar 

  29. Manini AF, Nelson LS, Hoffman RS. Prognostic utility of serum potassium in chronic digoxin toxicity: a case-control study. Am J Cardiovasc Drugs. 2011;11(3):173–8.

    Article  CAS  PubMed  Google Scholar 

  30. Papadakis MA, Wexman MP, Fraser C, Sedlacek SM. Hyperkalemia complicating digoxin toxicity in a patient with renal failure. Am J Kidney Dis. 1985;5(1):64–6.

    Article  CAS  PubMed  Google Scholar 

  31. Moreno M, Murphy C, Goldsmith C. Increase in serum potassium resulting from the administration of hypertonic mannitol and other solutions. J Lab Clin Med. 1969;73(2):291–8.

    CAS  PubMed  Google Scholar 

  32. Manninen PH, Lam AM, Gelb AW, Brown SC. The effect of high-dose mannitol on serum and urine electrolytes and osmolality in neurosurgical patients. Can J Anaesth. 1987;34(5):442–6.

    Article  CAS  PubMed  Google Scholar 

  33. Sharma J, Salhotra R. Mannitol-induced intraoperative hyperkalemia, a little-known clinical entity. J Anaesthesiol Clin Pharmacol. 2012;28(4):546–7.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Tobita K, Kohno T. Case of hyperkalemia after the administration of hypertonic mannitol during craniotomy. Masui. 2010;59(5):641–4.

    PubMed  Google Scholar 

  35. Meneton P, Loffing J, Warnock DG. Sodium and potassium handling by the aldosterone-sensitive distal nephron: the pivotal role of the distal and connecting tubule. Am J Physiol Renal Physiol. 2004;287(4):F593–601.

    Article  CAS  PubMed  Google Scholar 

  36. Staruschenko A. Regulation of transport in the connecting tubule and cortical collecting duct. Compr Physiol. 2012;2:1541–84.

    PubMed Central  PubMed  Google Scholar 

  37. Roscioni SS, de Zeeuw D, Bakker SJ, Lambers Heerspink HJ. Management of hyperkalaemia consequent to mineralocorticoid-receptor antagonist therapy. Nat Rev Nephrol. 2012;8(12):691–9.

    Article  CAS  PubMed  Google Scholar 

  38. Palmer BF. Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. N Engl J Med. 2004;351(6):585–92.

    Article  CAS  PubMed  Google Scholar 

  39. Reardon LC, Macpherson DS. Hyperkalemia in outpatients using angiotensin-converting enzyme inhibitors. How much should we worry? Arch Intern Med. 1998;158(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  40. Weir MR, Rolfe M. Potassium homeostasis and renin-angiotensin-aldosterone system inhibitors. Clin J Am Soc Nephrol. 2010;5(3):531–48.

    Article  CAS  PubMed  Google Scholar 

  41. Goldberg AI, Dunlay MC, Sweet CS. Safety and tolerability of losartan potassium, an angiotensin II receptor antagonist, compared with hydrochlorothiazide, atenolol, felodipine ER, and angiotensin-converting enzyme inhibitors for the treatment of systemic hypertension. Am J Cardiol. 1995;75(12):793–5.

    Article  CAS  PubMed  Google Scholar 

  42. Raebel MA. Hyperkalemia associated with use of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. Cardiovasc Ther. 2012;30(3):e156–66.

    Article  CAS  PubMed  Google Scholar 

  43. Cheng H, Harris RC. Potential side effects of renin inhibitors—mechanisms based on comparison with other renin-angiotensin blockers. Expert Opin Drug Saf. 2006;5(5):631–41.

    Article  CAS  PubMed  Google Scholar 

  44. Park I, Sheen SS, Lim HS, Yoon D, Park MY, Lee SH, et al. Comparison of hyperkalemic risk in hospitalized patients treated with different angiotensin receptor blockers: a retrospective cohort study using a Korean clinical research database. Am J Cardiovasc Drugs. 2012;12(4):255–62.

    Article  CAS  PubMed  Google Scholar 

  45. Desai AS, Swedberg K, McMurray JJ, Granger CB, Yusuf S, Young JB, et al. Incidence and predictors of hyperkalemia in patients with heart failure: an analysis of the CHARM Program. J Am Coll Cardiol. 2007;50(20):1959–66.

    Article  CAS  PubMed  Google Scholar 

  46. Konstam MA, Neaton JD, Dickstein K, Drexler H, Komajda M, Martinez FA, et al. Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAAL study): a randomised, double-blind trial. Lancet. 2009;374(9704):1840–8.

    Article  CAS  PubMed  Google Scholar 

  47. Appel GB, Radhakrishnan J, Avram MM, DeFronzo RA, Escobar-Jimenez F, Campos MM, et al. Analysis of metabolic parameters as predictors of risk in the RENAAL study. Diabetes Care. 2003;26(5):1402–7.

    Article  PubMed  Google Scholar 

  48. Miao Y, Dobre D, Heerspink HJ, Brenner BM, Cooper ME, Parving HH, et al. Increased serum potassium affects renal outcomes: a post hoc analysis of the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. Diabetologia. 2011;54(1):44–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Harel Z, Gilbert C, Wald R, Bell C, Perl J, Juurlink D, et al. The effect of combination treatment with aliskiren and blockers of the renin-angiotensin system on hyperkalaemia and acute kidney injury: systematic review and meta-analysis. BMJ. 2012;344:e42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367(23):2204–13.

    Article  CAS  PubMed  Google Scholar 

  51. Weir MR, Bush C, Anderson DR, Zhang J, Keefe D, Satlin A. Antihypertensive efficacy, safety, and tolerability of the oral direct renin inhibitor aliskiren in patients with hypertension: a pooled analysis. J Am Soc Hypertens. 2007;1(4):264–77.

    Article  PubMed  Google Scholar 

  52. White WB, Bresalier R, Kaplan AP, Palmer BF, Riddell RH, Lesogor A, et al. Safety and tolerability of the direct renin inhibitor aliskiren: a pooled analysis of clinical experience in more than 12,000 patients with hypertension. J Clin Hypertens (Greenwich). 2010;12(10):765–75.

    Article  CAS  Google Scholar 

  53. Harirforoosh S, Jamali F. Renal adverse effects of nonsteroidal anti-inflammatory drugs. Expert Opin Drug Saf. 2009;8(6):669–81.

    Article  CAS  PubMed  Google Scholar 

  54. Bennett WM, Henrich WL, Stoff JS. The renal effects of nonsteroidal anti-inflammatory drugs: summary and recommendations. Am J Kidney Dis. 1996;28(1 Suppl 1):S56–62.

    Article  CAS  PubMed  Google Scholar 

  55. Brater DC. Effects of nonsteroidal anti-inflammatory drugs on renal function: focus on cyclooxygenase-2-selective inhibition. Am J Med. 1999;107(6A):65S–70S discussion S-1S.

    Article  CAS  PubMed  Google Scholar 

  56. Preston RA, Hirsh MM, Oster MD Jr, Oster HM. University of Miami Division of Clinical Pharmacology therapeutic rounds: drug-induced hyperkalemia. Am J Ther. 1998;5(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  57. Khanna A, White WB. The management of hyperkalemia in patients with cardiovascular disease. Am J Med. 2009;122(3):215–21.

    Article  CAS  PubMed  Google Scholar 

  58. Zimran A, Kramer M, Plaskin M, Hershko C. Incidence of hyperkalaemia induced by indomethacin in a hospital population. Br Med J (Clin Res Ed). 1985;291(6488):107–8.

    Article  CAS  Google Scholar 

  59. Lafrance JP, Miller DR. Dispensed selective and nonselective nonsteroidal anti-inflammatory drugs and the risk of moderate to severe hyperkalemia: a nested case-control study. Am J Kidney Dis. 2012;60(1):82–9.

    Article  CAS  PubMed  Google Scholar 

  60. Aljadhey H, Tu W, Hansen RA, Blalock S, Brater DC, Murray MD. Risk of hyperkalemia associated with selective COX-2 inhibitors. Pharmacoepidemiol Drug Saf. 2010;19(11):1194–8.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Siebels M, Andrassy K, Vecsei P, Seelig HP, Back T, Nawroth P, et al. Dose dependent suppression of mineralocorticoid metabolism by different heparin fractions. Thromb Res. 1992;66(5):467–73.

    Article  CAS  PubMed  Google Scholar 

  62. Oster JR, Singer I, Fishman LM. Heparin-induced aldosterone suppression and hyperkalemia. Am J Med. 1995;98(6):575–86.

    Article  CAS  PubMed  Google Scholar 

  63. Bhaskar B, Fraser JF, Mullaney D. Lest we forget: heparin-induced hyperkalemia. J Cardiothorac Vasc Anesth. 2012;26(1):106–9.

    Article  PubMed  Google Scholar 

  64. Gheno G, Cinetto L, Savarino C, Vellar S, Carraro M, Randon M. Variations of serum potassium level and risk of hyperkalemia in inpatients receiving low-molecular-weight heparin. Eur J Clin Pharmacol. 2003;59(5–6):373–7.

    Article  CAS  PubMed  Google Scholar 

  65. Aull L, Chao H, Coy K. Heparin-induced hyperkalemia. DICP. 1990;24(3):244–6.

    CAS  PubMed  Google Scholar 

  66. Koren-Michowitz M, Avni B, Michowitz Y, Moravski G, Efrati S, Golik A. Early onset of hyperkalemia in patients treated with low molecular weight heparin: a prospective study. Pharmacoepidemiol Drug Saf. 2004;13(5):299–302.

    Article  CAS  PubMed  Google Scholar 

  67. Danguy C, Biston P, Carlier E, Defrance P, Piagnerelli M. Severe hyperkalemia in critically ill patients treated with prophylactic doses of enoxaparin. Intensive Care Med. 2012;38(11):1904–5.

    Article  PubMed  Google Scholar 

  68. Marcelli JM, Lalau JD, Abourachid H, Quiret JC, Quichaud J. Unlike heparin, low-molecular weight heparin does not suppress aldosterone production. Horm Metab Res. 1989;21(7):402.

    Article  CAS  PubMed  Google Scholar 

  69. Rangel EB. The metabolic and toxicological considerations for immunosuppressive drugs used during pancreas transplantation. Expert Opin Drug Metab Toxicol. 2012;8(12):1531–48.

    Article  CAS  PubMed  Google Scholar 

  70. Caliskan Y, Kalayoglu-Besisik S, Sargin D, Ecder T. Cyclosporine-associated hyperkalemia: report of four allogeneic blood stem-cell transplant cases. Transplantation. 2003;75(7):1069–72.

    Article  PubMed  Google Scholar 

  71. Laine J, Holmberg C. Renal and adrenal mechanisms in cyclosporine-induced hyperkalaemia after renal transplantation. Eur J Clin Invest. 1995;25(9):670–6.

    Article  CAS  PubMed  Google Scholar 

  72. Heering P, Grabensee B. Influence of ciclosporin A on renal tubular function after kidney transplantation. Nephron. 1991;59(1):66–70.

    Article  CAS  PubMed  Google Scholar 

  73. Funder JW. Eplerenone: hypertension, heart failure and the importance of mineralocorticoid receptor blockade. Future Cardiol. 2006;2(5):535–41.

    Article  CAS  PubMed  Google Scholar 

  74. Nappi JM, Sieg A. Aldosterone and aldosterone receptor antagonists in patients with chronic heart failure. Vasc Health Risk Manag. 2011;7:353–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341(10):709–17.

    Article  CAS  PubMed  Google Scholar 

  76. Pitt B, Bakris G, Ruilope LM, DiCarlo L, Mukherjee R, Investigators E. Serum potassium and clinical outcomes in the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS). Circulation. 2008;118(16):1643–50.

    Article  CAS  PubMed  Google Scholar 

  77. Juurlink DN, Mamdani MM, Lee DS, Kopp A, Austin PC, Laupacis A, et al. Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. N Engl J Med. 2004;351(6):543–51.

    Article  CAS  PubMed  Google Scholar 

  78. Dinsdale C, Wani M, Steward J, O’Mahony MS. Tolerability of spironolactone as adjunctive treatment for heart failure in patients over 75 years of age. Age Ageing. 2005;34(4):395–8.

    Article  PubMed  Google Scholar 

  79. Wei L, Struthers AD, Fahey T, Watson AD, Macdonald TM. Spironolactone use and renal toxicity: population based longitudinal analysis. BMJ. 2010;340:c1768.

    Article  PubMed  Google Scholar 

  80. Greenblatt DJ, Koch-Weser J. Adverse reactions to spironolactone. A report from the boston collaborative drug surveillance program. JAMA. 1973;225(1):40–3.

    Article  CAS  PubMed  Google Scholar 

  81. Svensson M, Gustafsson F, Galatius S, Hildebrandt PR, Atar D. How prevalent is hyperkalemia and renal dysfunction during treatment with spironolactone in patients with congestive heart failure? J Card Fail. 2004;10(4):297–303.

    Article  CAS  PubMed  Google Scholar 

  82. Epstein M, Calhoun DA. Aldosterone blockers (mineralocorticoid receptor antagonism) and potassium-sparing diuretics. J Clin Hypertens (Greenwich). 2011;13(9):644–8.

    Article  CAS  Google Scholar 

  83. Paterson JW, Dollery CT, Haslam RM. Amiloride hydrochloride in hypertensive patients. Br Med J. 1968;1(5589):422–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Chiu TF, Bullard MJ, Chen JC, Liaw SJ, Ng CJ. Rapid life-threatening hyperkalemia after addition of amiloride HCl/hydrochlorothiazide to angiotensin-converting enzyme inhibitor therapy. Ann Emerg Med. 1997;30(5):612–5.

    Article  CAS  PubMed  Google Scholar 

  85. Quan KC, Kahana L. Clinical experience with the diuretic effects of triamterene alone and combined with hydrochlorothiazide. Curr Ther Res Clin Exp. 1964;6:27–34.

    CAS  PubMed  Google Scholar 

  86. Cohen AB. Hyperkalemic effects of triamterene. Ann Intern Med. 1966;65(3):521–7.

    Article  CAS  PubMed  Google Scholar 

  87. Petersen AG. Letter: dyazide and hyperkalemia. Ann Intern Med. 1976;84(5):612–3.

    Article  CAS  PubMed  Google Scholar 

  88. Choi MJ, Fernandez PC, Patnaik A, Coupaye-Gerard B, D’Andrea D, Szerlip H, et al. Brief report: trimethoprim-induced hyperkalemia in a patient with AIDS. N Engl J Med. 1993;328(10):703–6.

    Article  CAS  PubMed  Google Scholar 

  89. Zietse R, Zoutendijk R, Hoorn EJ. Fluid, electrolyte and acid-base disorders associated with antibiotic therapy. Nat Rev Nephrol. 2009;5(4):193–202.

    Article  CAS  PubMed  Google Scholar 

  90. Perazella MA, Mahnensmith RL. Hyperkalemia in the elderly: drugs exacerbate impaired potassium homeostasis. J Gen Intern Med. 1997;12(10):646–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Perazella MA. Trimethoprim-induced hyperkalaemia: clinical data, mechanism, prevention and management. Drug Saf. 2000;22(3):227–36.

    Article  CAS  PubMed  Google Scholar 

  92. Ackerman BH, Patton ML, Guilday RE, Haith LR Jr, Stair-Buchmann M, Reigart CL. Trimethoprim-induced hyperkalemia in burn patients treated with intravenous or oral trimethoprim sulfamethoxazole for methicillin-resistant Staphylococcus aureus and other infections: nature or nurture? J Burn Care Res. 2013;34(1):127–32.

    Article  PubMed  Google Scholar 

  93. Antoniou T, Gomes T, Juurlink DN, Loutfy MR, Glazier RH, Mamdani MM. Trimethoprim-sulfamethoxazole-induced hyperkalemia in patients receiving inhibitors of the renin-angiotensin system: a population-based study. Arch Intern Med. 2010;170(12):1045–9.

    Article  CAS  PubMed  Google Scholar 

  94. Kleyman TR, Roberts C, Ling BN. A mechanism for pentamidine-induced hyperkalemia: inhibition of distal nephron sodium transport. Ann Intern Med. 1995;122(2):103–6.

    Article  CAS  PubMed  Google Scholar 

  95. Gabriels G, Stockem E, Greven J. Potassium-sparing renal effects of trimethoprim and structural analogues. Nephron. 2000;86(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  96. Buff DD, Aboal AA. Pentamidine-associated renal dysfunction and hyperkalemia. Am J Med. 1990;88(5):552.

    Article  CAS  PubMed  Google Scholar 

  97. O’Brien JG, Dong BJ, Coleman RL, Gee L, Balano KB. A 5-year retrospective review of adverse drug reactions and their risk factors in human immunodeficiency virus-infected patients who were receiving intravenous pentamidine therapy for Pneumocystis carinii pneumonia. Clin Infect Dis. 1997;24(5):854–9.

    Article  PubMed  Google Scholar 

  98. Briceland LL, Bailie GR. Pentamidine-associated nephrotoxicity and hyperkalemia in patients with AIDS. DICP. 1991;25(11):1171–4.

    CAS  PubMed  Google Scholar 

  99. Perez GO, Oster JR, Pelleya R, Caralis PV, Kem DC. Hyperkalemia from single small oral doses of potassium chloride. Nephron. 1984;36(4):270–1.

    Article  CAS  PubMed  Google Scholar 

  100. Lawson DH. Adverse reactions to potassium chloride. Q J Med. 1974;43(171):433–40.

    CAS  PubMed  Google Scholar 

  101. John SK, Rangan Y, Block CA, Koff MD. Life-threatening hyperkalemia from nutritional supplements: uncommon or undiagnosed? Am J Emerg Med. 2011;29(9):1237e1–2.

    Article  Google Scholar 

  102. Doorenbos CJ, Vermeij CG. Danger of salt substitutes that contain potassium in patients with renal failure. BMJ. 2003;326(7379):35–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Ray K, Dorman S, Watson R. Severe hyperkalaemia due to the concomitant use of salt substitutes and ACE inhibitors in hypertension: a potentially life threatening interaction. J Hum Hypertens. 1999;13(10):717–20.

    Article  CAS  PubMed  Google Scholar 

  104. Dent A, Walmsley D, Dhandapani S. Hyperkalaemia is a risk with low sodium salt in vulnerable patients. BMJ. 2011;343:d4514.

    Article  PubMed  Google Scholar 

  105. Lyons KS, McGlinchey P. Hyperkalaemic cardiac arrhythmia due to prolonged ingestion of potassium citrate. Int J Cardiol. 2009;131(3):e134–6.

    Article  PubMed  Google Scholar 

  106. Thiele A, Rehman HU. Hyperkalemia caused by penicillin. Am J Med. 2008;121(8):e1–2.

    Article  CAS  PubMed  Google Scholar 

  107. Chen J, Singhapricha T, Memarzadeh M, Ziman A, Yuan S, Hu KQ, et al. Storage age of transfused red blood cells during liver transplantation and its intraoperative and postoperative effects. World J Surg. 2012;36(10):2436–42.

    Article  PubMed  Google Scholar 

  108. Zimrin AB, Hess JR. Current issues relating to the transfusion of stored red blood cells. Vox Sang. 2009;96(2):93–103.

    Article  CAS  PubMed  Google Scholar 

  109. Barcia JP. Hyperkalemia associated with rapid infusion of conventional and lipid complex formulations of amphotericin B. Pharmacotherapy. 1998;18(4):874–6.

    CAS  PubMed  Google Scholar 

  110. Zaleski M, Dabage N, Paixao R, Muniz J. Dabigatran-induced hyperkalemia in a renal transplant recipient: a clinical observation. J Clin Pharmacol. 2013;53(4):456–8.

    Article  PubMed  Google Scholar 

  111. Marusic S, Gojo-Tomic N, Bacic-Vrca V, Bozikov V. Hyperkalaemia associated with hydroxyurea in a patient with polycythaemia vera. Eur J Clin Pharmacol. 2011;67(7):757–8.

    Article  PubMed  Google Scholar 

  112. Iglesias MH, Giesbrecht EM, von Dadelszen P, Magee LA. Postpartum hyperkalemia associated with magnesium sulfate. Hypertens Pregnancy. 2011;30(4):481–4.

    Article  CAS  PubMed  Google Scholar 

  113. Kitagawa H, Chang H, Fujita T. Hyperkalemia due to nafamostat mesylate. N Engl J Med. 1995;332(10):687.

    Article  CAS  PubMed  Google Scholar 

  114. Hata T, Hata K, Kawamura T. Severe hyperkalaemia with nafarelin. Lancet. 1996;347(8997):333.

    Article  CAS  PubMed  Google Scholar 

  115. Lee HH, Hsu PC, Lin TH, Lai WT, Sheu SH. Nicorandil-induced hyperkalemia in a uremic patient. Case Rep Med. 2012;2012:812178.

    PubMed Central  PubMed  Google Scholar 

  116. Adabala M, Jhaveri KD, Gitman M. Severe hyperkalaemia resulting from octreotide use in a haemodialysis patient. Nephrol Dial Transplant. 2010;25(10):3439–42.

    Article  CAS  PubMed  Google Scholar 

  117. Tashiro M, Yoshikawa I, Kume K, Narita R, Sugihara Y, Otsuki M. Acute hyperkalemia associated with intravenous omeprazole therapy. Am J Gastroenterol. 2003;98(5):1209–10.

    Article  PubMed  Google Scholar 

  118. Gau JT, Heh V, Acharya U, Yang YX, Kao TC. Uses of proton pump inhibitors and serum potassium levels. Pharmacoepidemiol Drug Saf. 2009;18(9):865–71.

    Article  CAS  PubMed  Google Scholar 

  119. Lee JH, Ko YS, Shin HJ, Yi JH, Han SW, Kim HJ. Is There a Relationship between Hyperkalemia and Propofol? Electrolyte Blood Press. 2011;9(1):27–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Harris E, Behrens J, Samson D, Rahemtulla A, Russell NH, Byrne JL. Use of thalidomide in patients with myeloma and renal failure may be associated with unexplained hyperkalaemia. Br J Haematol. 2003;122(1):160–1.

    Article  CAS  PubMed  Google Scholar 

  121. Panteliou E, Young N, Naysmith M. Life-threatening hyperkalemia following zoledronic acid infusion for Paget’s disease: a case report. J Med Case Rep. 2011;5:367.

    Article  PubMed Central  PubMed  Google Scholar 

  122. Raebel MA, Ross C, Xu S, Roblin DW, Cheetham C, Blanchette CM, et al. Diabetes and drug-associated hyperkalemia: effect of potassium monitoring. J Gen Intern Med. 2010;25(4):326–33.

    Article  PubMed Central  PubMed  Google Scholar 

  123. Bush TM, Shlotzhauer TL, Imai K. Nonsteroidal anti-inflammatory drugs. Proposed guidelines for monitoring toxicity. West J Med. 1991;155(1):39–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Hoskote SS, Joshi SR, Ghosh AK. Disorders of potassium homeostasis: pathophysiology and management. J Assoc Physicians India. 2008;56:685–93.

    PubMed  Google Scholar 

  125. ECC Committee, Subcommittees and Task Forces of the American Heart Association. 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2005;112(24 Suppl): IV1-203.

  126. Weiner ID, Wingo CS. Hyperkalemia: a potential silent killer. J Am Soc Nephrol. 1998;9(8):1535–43.

    CAS  PubMed  Google Scholar 

  127. Chapagain A, Ashman N. Hyperkalaemia in the age of aldosterone antagonism. QJM. 2012;105(11):1049–57.

    Article  CAS  PubMed  Google Scholar 

  128. Levine M, Nikkanen H, Pallin DJ. The effects of intravenous calcium in patients with digoxin toxicity. J Emerg Med. 2011;40(1):41–6.

    Article  PubMed  Google Scholar 

  129. Dick TB, Raines AA, Stinson JB, Collingridge DS, Harmston GE. Fludrocortisone is effective in the management of tacrolimus-induced hyperkalemia in liver transplant recipients. Transplant Proc. 2011;43(7):2664–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this study. Chaker Ben Salem, Atef Badreddine, Neila Fathallah, Raoudha Slim and Houssem Hmouda have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaker Ben Salem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Salem, C., Badreddine, A., Fathallah, N. et al. Drug-Induced Hyperkalemia. Drug Saf 37, 677–692 (2014). https://doi.org/10.1007/s40264-014-0196-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-014-0196-1

Keywords

Navigation