Skip to main content
Log in

Fibromyalgia Syndrome is Associated with Hypocortisolism

  • Published:
International Journal of Behavioral Medicine Aims and scope Submit manuscript

Abstract

Background

Fibromyalgia syndrome (FMS) is a disease of unknown pathogenesis characterized by chronic musculoskeletal pain. FMS has been also associated with altered endocrinological responses, but findings are inconsistent.

Purpose

The aim of the present study was to investigate free salivary cortisol levels in FMS patients compared with healthy controls with a particular focus on the cortisol awakening response (CAR). The saliva samples were collected in a controlled hospital-hotel setting, in which the participants’ compliance was high and a number of potential confounders were analyzed.

Method

Twenty-nine chronic female FMS patients and 29 age-matched healthy female controls were recruited. Salivary cortisol samples were investigated eight times: in the afternoon when participants arrived at the hospital, after stress provocation (to be reported separately), in the evening, before they went to sleep, upon awakening, 30 and 60 min later, and during the afternoon of the second day. Questionnaires measuring pain levels, sleeping problems, perceived stress, and personality were administered to the participants. Other psychophysiological measurements were used to assess sleep quality and heart rate.

Results

Patients with FMS had significantly lower cortisol levels during the day, most pronounced in the morning (CAR). The potential confounders analyzed did not influence the results. As expected, FMS patients reported more pain, stress, sleeping problems, anxiety, and depression.

Conclusion

The results lend support to the hypothesis of a dysfunction in the hypothalamus–pituitary–adrenal axis in FMS patients, with generally lower cortisol values, most pronounced upon awakening (CAR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wolfe F, Smythe HA, Yunus MB, Bennet RM, Bombardier C, Goldenberg DL, et al. The American College of Rheumatology 1990 criteria for the classification of fibromyalgia: report of the multicenter criteria committee. Arthritis Rheum. 1990;33:160–72.

    Article  CAS  PubMed  Google Scholar 

  2. Wolfe F, Ross K, Anderson J, Russell I, Hebert L. The prevalence and characteristics of fibromyalgia in the general population. Arthritis Rheum. 1995;38:19–28.

    Article  CAS  PubMed  Google Scholar 

  3. Wolfe F, Anderson J, Harkness D, Bennet R, Caro X, Goldenberg D, et al. Prospective, longitudinal, multicenter study of service utilization and costs in fibromyalgia. Arthritis Rheum. 1997;40:1560–70.

    Article  CAS  PubMed  Google Scholar 

  4. Krag N, Norregaard J, Larsen J, Danneskiold-Samsoe BA. Blinded controlled evaluation of anxiety and depressive symptoms in patients with fibromyalgia, as measured by standardized psychometric interview scales. Acta Psychiatr Scand. 1994;89:370–5.

    Article  CAS  PubMed  Google Scholar 

  5. Catley D, Kaell AT, Kirschbaum C, Stone AA. A naturalistic evaluation of cortisol secretion in persons with fibromyalgia and rheumatoid arthritis. Arthritis Care Res. 2000;13:51–61.

    Article  CAS  PubMed  Google Scholar 

  6. Crofford LJ, Pillemer SR, Kalogeras KT, Cash JM, Michelson D, Kling MA, et al. Hypothalamic–pituitary–adrenal axis perturbations in patients with fibromyalgia. Arthritis Rheum. 1994;37:1583–92.

    Article  CAS  PubMed  Google Scholar 

  7. Lentjes EG, Griep EN, Boersma JW, Romijn FP, de Kloet ER. Glucocorticoid receptors, fibromyalgia and low back pain. Psychoneuroendocrinology. 1997;22:603–14.

    Article  CAS  PubMed  Google Scholar 

  8. Klerman EB, Goldenberg DL, Brown EN, Maliszewski AM, Adler GK. Circadian rhythms of women with fibromyalgia. J Clin Endocrinol Metab. 2001;86:1034–9.

    Article  CAS  PubMed  Google Scholar 

  9. Crofford LJ, Young EA, Engleberg NC, Korszun A, Brucksch CB, McClure LA, et al. Basal circadian and pulsatile ACTH and cortisol secretion in patients with fibromyalgia and/or chronic fatigue syndrome. Brain Behav Immun. 2004;18:314–25.

    Article  CAS  PubMed  Google Scholar 

  10. Wingenfeld K, Wagner D, Schmidt I, Meinlschmidt G, Hellhammer DH, Heim C. The low-dose dexamethasone suppression test in fibromyalgia. J Psychosom Res. 2007;62:85–91.

    Article  PubMed  Google Scholar 

  11. Maes M, Lin A, Bonaccorso S, van Hunsel F, van Gastel A, Delmeire L, et al. Increased 24-hour urinary cortisol excretion in patients with post-traumatic stress disorder and patients with major depression, but not in patients with fibromyalgia. Acta Psychiatr Scand. 1998;98:328–35.

    Article  CAS  PubMed  Google Scholar 

  12. Adler GK, Kinsley BT, Hurwitz S, Mossey CJ, Goldenberg DL. Reduced hypothalamic–pituitary and sympathoadrenal responses to hypoglycemia in women with fibromyalgia syndrome. Am J Med. 1999;106:534–43.

    Article  CAS  PubMed  Google Scholar 

  13. McLean SA, Williams DA, Harris RE, Kop WJ, Groner KH, Ambrose K, et al. Momentary relationship between cortisol secretion and symptoms in patients with fibromyalgia. Arthritis Rheum. 2005;52:3660–9.

    Article  CAS  PubMed  Google Scholar 

  14. Macedo J, Hesse J, Turner J, Meyer J, Hellhammer D, Muller C. Glucocorticoid sensitivity in fibromyalgia patients: decreased expression of corticosteroid receptors and glucocorticoid-induced leucine zipper. Psychoneuroendocrinology. 2008;33:799–809.

    Article  CAS  PubMed  Google Scholar 

  15. Wingenfeld K, Heim C, Schmidt I, Wagner D, Meinlschmidt G, Hellhammer D. HPA axis reactivity and lymphocyte glucocorticoid sensitivity in fibromyalgia syndrome and chronic pelvic pain. Psychosom Med. 2008;70:65–72.

    Article  CAS  PubMed  Google Scholar 

  16. Griep E, Boersma J, de Kloet E. Altered reactivity of the hypothalamic-pituitary-adrenal axis in the primary fibromyalgia syndrome. J Rheumatol. 1993;20:469–74.

    CAS  PubMed  Google Scholar 

  17. Griep EN, Boersma JW, Lentjes EG, Prins AP, van der Korst JK, de Kloet ER. Function of the hypothalamic–pituitary–adrenal axis in patients with fibromyalgia and low back pain. J Rheumatol. 1998;25:1374–81.

    CAS  PubMed  Google Scholar 

  18. Loevinger B, Muller D, Alonso C, Coe C. Metabolic syndrome in women with chronic pain. Metabolism. 2007;56:87–93.

    Article  CAS  PubMed  Google Scholar 

  19. McCain GA, Tilbe KS. Diurnal hormone variation in fibromyalgia syndrome: a comparison with rheumatoid arthritis. J Rheumatol. 1989;16 Suppl 19:154–7.

    Google Scholar 

  20. van Denderen J, Boersma J, Zeinstra P, Hollander A, van Neerbos B. Physiological effects of exhaustive physical exercise in primary fibromyalgia syndrome (PFS): is PFS a disorder of neuroendocrine reactivity? Scand J Rheumatol. 1992;21:35–7.

    Article  PubMed  Google Scholar 

  21. Calis M, Gokce C, Ates F, Ulker S, Izgi HB, Demir H, et al. Investigation of the hypothalamo-pituitary-adrenal axis (HPA) by 1 microg ACTH test and metyrapone test in patients with primary fibromyalgia syndrome. J Endocrinol Invest. 2004;27:42–6.

    CAS  PubMed  Google Scholar 

  22. Gur A, Cevik R, Sarac AJ, Colpan L, Em S. Hypothalamic-pituitary-gonadal axis and cortisol in young women with primary fibromyalgia: the potential roles of depression, fatigue, and sleep disturbance in the occurrence of hypocortisolism. Ann Rheum Dis. 2004;63:1504–6.

    Article  CAS  PubMed  Google Scholar 

  23. Gur A, Cevik R, Nas K, Colpan L, Sarac S. Cortisol and hypothalamic-pituitary-gonadal axis hormones in follicular-phase women with fibromyalgia and chronic fatigue syndrome and effect of depressive symptoms on the these hormones. Arthritis Res Ther. 2004;6:R232–8.

    Article  CAS  PubMed  Google Scholar 

  24. Chrousos GP, Gold PW. The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis. JAMA. 1992;267:1244–52.

    Article  CAS  PubMed  Google Scholar 

  25. Sternberg EM. Hypoimmune fatigue syndromes: diseases of the stress response? J Rheumatol. 1993;20:418–21.

    CAS  PubMed  Google Scholar 

  26. Crofford LJ, Demitrack MA. Evidence that abnormalities of central neurohormonal systems are key to understanding fibromyalgia and chronic fatigue syndrome. Rheum Dis Clin N Am. 1996;22:267–84.

    Article  CAS  Google Scholar 

  27. Clauw DJ, Chrousos GP. Chronic pain and fatigue syndromes: overlapping clinical and neuroendocrine features and potential pathogenic mechanisms. Neuroimmunomodulation. 1997;4:134–53.

    CAS  PubMed  Google Scholar 

  28. Fries E, Hesse J, Hellhammer J, Hellhammer DH. A new view on hypocortisolism. Psychoneuroendocrinology. 2005;30:1010–16.

    Article  CAS  PubMed  Google Scholar 

  29. Heim C, Ehlert U, Hellhammer DH. The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology. 2000;25:1–35.

    Article  CAS  PubMed  Google Scholar 

  30. Weissbecker I, Floyd A, Dedert E, Salmon P, Sephton S. Childhood trauma and diurnal cortisol disruption in fibromyalgia syndrome. Psychoneuroendocrinology. 2006;31:312–24.

    Article  CAS  PubMed  Google Scholar 

  31. Pruessner J, Wolf O, Hellhammer D, Buske-Kirschbaum A, von Auer K, Jobst S, et al. Free cortisol levels after awakening: a reliable biological marker for the assessment of adrenocortical activity. Life Sci. 1997;61:2539–49.

    Article  CAS  PubMed  Google Scholar 

  32. Williams E, Magid K, Steptoe A. The impact of time of waking and concurrent subjective stress on the cortisol response to awakening. Psychoneuroendocrinology. 2005;30:139–48.

    Article  CAS  PubMed  Google Scholar 

  33. Wilhelm I, Born J, Kudielka BM, Schlotz W, Wüst S. Is the cortisol awakening rise a response to awakening? Psychoneuroendocrinology. 2007;32:358–66.

    Article  CAS  PubMed  Google Scholar 

  34. Kudielka BM, Hellhammer DH, Wüst S. Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology. 2009;34:2–18.

    Article  CAS  PubMed  Google Scholar 

  35. Miller GE, Chen E, Zhou ES. If it goes up, must it come down? Chronic stress and the hypothalamic–pituitary–adrenocortical axis in humans. Psychol Bull. 2007;133:25–45.

    Article  PubMed  Google Scholar 

  36. Kudielka BM, Bellingrath S, Hellhammer DH. Cortisol in burnout and vital exhaustion: an overview. G Ital Med Lav Ergon [Appl Psychol Work Rehabil Med]. 2006;28:34–42.

    CAS  Google Scholar 

  37. Boscarino JA. Posttraumatic stress disorder, exposure to combat, and lower plasma cortisol among Vietnam veterans: findings and clinical implications. J Consult Clin Psychol. 1996;64:191–201.

    Article  CAS  PubMed  Google Scholar 

  38. Wüst S, Wolf J, Hellhammer D, Federenko I, Schommer N, Kirschbaum C. The cortisol awakening response—normal values and confounds. Noise Health. 2000;7:77–85.

    Google Scholar 

  39. Clow A, Thorn L, Evans P, Hucklebridge F. The awakening cortisol response: methodological issues and significance. Stress. 2004;7:29–37.

    Article  CAS  PubMed  Google Scholar 

  40. Federenko I, Wüst S, Hellhammer DH, Dechoux R, Kumsta R, Kirschbaum C. Free cortisol awakening responses are influenced by awakening time. Psychoneuroendocrinology. 2004;29:174–84.

    Article  CAS  PubMed  Google Scholar 

  41. Borg G, Borg E. A new generation of scaling methods: level anchored ration scaling. Psychologia. 2001;28:15–45.

    Google Scholar 

  42. Eriksen H, Ihlebæk C, Ursin H. A scoring system for Subjective Health Complaints (SHC). Scand J Public Health. 1999;27:63–72.

    Article  CAS  PubMed  Google Scholar 

  43. Schalling D, Edman G. Personality and vulnerability to psychopathology: the development of the Karolinska Scales of Personality (KSP). Stockholm: Karolinska Institutet; 1987.

    Google Scholar 

  44. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24:385–96.

    Article  CAS  PubMed  Google Scholar 

  45. Eysenck H, Eysenck S. The manual for the Eysenck Personality Questionnaire. London: Hodder & Stoughton; 1975.

    Google Scholar 

  46. Iber C, Ancoli-Israel S, Chesson A, Quan SF. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. 1st ed. Westchester: American Academy of Sleep Medicine; 2007.

    Google Scholar 

  47. Pruessner J, Kirschbaum C, Meinlschmid G, Hellhammer D. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology. 2003;28:916–31.

    Article  CAS  PubMed  Google Scholar 

  48. Pruessner JC, Hellhammer DH, Kirschbaum C. Burnout, perceived stress, and cortisol responses to awakening. Psychosom Med. 1999;61:197–204.

    CAS  PubMed  Google Scholar 

  49. Roberts AD, Wessely S, Chalder T, Papadopoulos A, Cleare AJ. Salivary cortisol response to awakening in chronic fatigue syndrome. Br J Psychiatry. 2004;184:136–41.

    Article  PubMed  Google Scholar 

  50. Rohleder N, Joksimovic L, Wolf JM, Kirschbaum C. Hypocortisolism and increased glucocorticoid sensitivity of proinflammatory cytokine production in Bosnian war refugees with posttraumatic stress disorder. Biol Psychiatry. 2004;55:745–51.

    Article  CAS  PubMed  Google Scholar 

  51. Buchanan TW, Kern S, Allen JS, Tranel D, Kirschbaum C. Circadian regulation of cortisol after hippocampal damage in humans. Biol Psychiatry. 2004;56:651–6.

    Article  CAS  PubMed  Google Scholar 

  52. Wolf OT, Fujiwara E, Luwinski G, Kirschbaum C, Markowitsch HJ. No morning cortisol response in patients with severe global amnesia. Psychoneuroendocrinology. 2005;30:101–5.

    Article  CAS  PubMed  Google Scholar 

  53. Hellhammer J, Fries E, Schweisthal OW, Schlotz W, Stone AA, Hagemann D. Several daily measurements are necessary to reliably assess the cortisol rise after awakening: State- and trait components. Psychoneuroendocrinology. 2007;32:80–6.

    Article  CAS  PubMed  Google Scholar 

  54. Chida Y, Steptoe A. Cortisol awakening response and psychosocial factors: a systematic review and meta-analysis. Biol Psychol. 2009;80:265–78.

    Article  PubMed  Google Scholar 

  55. Van Houdenhove B, Van Den Eede F, Luyten P. Does hypothalamic-pituitary-adrenal axis hypofunction in chronic fatigue syndrome reflect a ‘crash’ in the stress system? Med hypothesis. 2009;72:701–5.

    Article  Google Scholar 

  56. McEwen BS. Protective and damaging effects of stress mediators. N Engl J Med. 1998;338:171–9.

    Article  CAS  PubMed  Google Scholar 

  57. Glass JM, Lyden AK, Petzke F, Stein P, Whalen G, Ambrose K, et al. The effect of brief exercise cessation on pain, fatigue, and mood symptom development in healthy, fit individuals. J Psychosom Res. 2004;57:391–8.

    PubMed  Google Scholar 

  58. Shaver JL, Lentz M, Landis CA, Heitkemper MM, Buchwald DS, Woods NF. Sleep, psychological distress, and stress arousal in women with fibromyalgia. Res Nurs Health. 1997;20:247–57.

    Article  CAS  PubMed  Google Scholar 

  59. Ekstedt M, Åkerstedt T, Söderström M. Microarousals during sleep are associated with increased levels of lipids, cortisol, and blood pressure. Psychosom Med. 2004;66:925–31.

    Article  CAS  PubMed  Google Scholar 

  60. Vgontzas AN, Bixler EO, Lin HM, Prolo P, Mastorakos G, Vela-Bueno A, et al. Chronic insomnia is associated with nyctohemeral activation of thehypothalamic–pituitary–adrenal axis: clinical implications. J Clin Endocrinol Metab. 2001;86:3787–94.

    Article  CAS  PubMed  Google Scholar 

  61. Shaver J, Johnston S, Lentz M, Landis C. Stress exposure, psychological distress, and physiological stress activation in midlife women with insomnia. Psychosom Med. 2002;64:793–802.

    Article  PubMed  Google Scholar 

  62. Backhaus J, Junghanns K, Hohagen F. Sleep disturbances are correlated with decreased morning awakening salivary cortisol. Psychoneuroendocrinology. 2004;29:1184–91.

    Article  CAS  PubMed  Google Scholar 

  63. Vgontzas A, Mastorakos G, Bixler E, Kales A, Gold P, Chrousos GP. Sleep deprivation effects on the activity of the hypothalamic-pituitary-adrenal and growth axes: potential clinical implications. Clin Endocrinol (Oxf). 1999;51:205–15.

    Article  CAS  Google Scholar 

  64. Leproult R, Copinschi G, Buxton O, Van Cauter E. Sleep loss results in an elevation of cortisol levels the next evening. Sleep. 1997;20:865–70.

    CAS  PubMed  Google Scholar 

  65. Pasquali R, Vicennati V. The abdominal obesity phenotype and insulin resistance are associated with abnormalities of the hypothalamic-pituitaryadrenal axis in humans. Horm Metab Res. 2000;32:521–5.

    Article  CAS  PubMed  Google Scholar 

  66. Wallerius S, Rosmond R, Ljung T, Holm G, Bjorntorp P. Rise in morning saliva cortisol is associated with abdominal obesity in men: a preliminary report. J Endocrinol Invest. 2003;26:616–19.

    CAS  PubMed  Google Scholar 

  67. Steptoe A, Kunz-Ebrecht SR, Brydon L, Wardle J. Central adiposity and cortisol responses to waking in middle-aged men and women. Int J Obes. 2004;28:1168–73.

    Article  CAS  Google Scholar 

  68. Alen M, Pakarinen A, Häikkinen K, Komi P. Responses of serum androgenic-anabolic and catabolic hormones to prolonged strength training. Int J Sports Med. 1988;9:229–33.

    Article  CAS  PubMed  Google Scholar 

  69. Tabata I, Atomi Y, Mutoh Y, Miyashita M. Effect of physical training on responses of serum adrenocorticotropic hormone during prolonged exhausting exercise. Eur J Appl Physiol. 1990;61:188–92.

    Article  CAS  Google Scholar 

  70. O’Connor P, Morgan W, Raglin J, Barksdale C, Kalin N. Mood state and salivary cortisol levels following overtraining in female swimmers. Psychoneuroendocrinology. 1989;14(4):303–10.

    Article  PubMed  Google Scholar 

  71. Filaire E, Duché P, Lac G, Robert A. Saliva cortisol, physical exercise and training: influences of swimming and handball on cortisol concentrations in women. Eur J Appl Physiol. 1996;74:274–8.

    Article  CAS  Google Scholar 

  72. Bouget M, Rouveix M, Michaux O, Pequignot J, Filaire E. Relationships among training stress, mood and dehydroepiandrosterone sulphate/cortisol ratio in female cyclists. J Sports Sci. 2006;24(12):1297–302.

    Article  PubMed  Google Scholar 

  73. Kudielka BM, Broderick JE, Kirschbaum C. Compliance with saliva sampling protocols: electronic monitoring reveals invalid cortisol daytime profiles in noncompliant subjects. Psychosom Med. 2003;65:313–19.

    Article  PubMed  Google Scholar 

  74. Kudielka B, Kirschbaum C. Awakening cortisol responses are influenced by health status and awaking time but not by menstrual phase. Psychoneuroendocrinology. 2003;28:35–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants to Professor Ulf Lundberg from the Swedish Research Council and the Swedish Council for Working Life and Social Research.

Thanks to Associate Professor Petra Lindfors for her suggestions regarding the statistical analysis and for her comments on the preliminary manuscript, Mrs. Ann-Christine Sjöbeck for performing the cortisol assays, Mr. Jens Nilsson for performing the sleep analysis, and to Mr. Håvard Wuttudal Lorås for assisting during data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Riva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riva, R., Mork, P.J., Westgaard, R.H. et al. Fibromyalgia Syndrome is Associated with Hypocortisolism. Int.J. Behav. Med. 17, 223–233 (2010). https://doi.org/10.1007/s12529-010-9097-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12529-010-9097-6

Keywords

Navigation