Skip to main content

Advertisement

Log in

Biologic augmentation of rotator cuff repair

  • Modern Techniques in Shoulder Surgery (Lawrence V. Gulotta, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Rotator cuff repair is a common orthopedic procedure. Despite advances in surgical technique, the rotator cuff tendons often fail to heal after surgery. In recent years, a number of biologic strategies have been developed and tested to augment healing after rotator cuff repair. These strategies include allograft, extracellular matrices (ECMs), platelet rich plasma (PRP), growth factors, stem cells, and gene therapy. This chapter reviews the most current research on biologic augmentation of rotator cuff repair using these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Boileau P, Brassart N, Watkinson DJ, Carles M, Hatzidakis AM, Krishnan SG. Arthroscopic repair of full-thickness tears of thesupraspinatus: Does the tendon really heal? J Bone Joint Surg Am. 2005;87:1229–40.

    Article  PubMed  Google Scholar 

  2. Gerber C, Fuchs B, Hodler J. The results of repair of massive tears of the rotator cuff. J Bone Joint Surg Am. 2000;82:505–15.

    PubMed  CAS  Google Scholar 

  3. Huijsmans PE, Pritchard MP, Berghs BM, Van Rooyen KS, Wallace AL, De Beer JF. Arthroscopic rotator cuff repair with double-row fixation. J Bone Joint Surg Am. 2007;89:1248–57.

    Article  PubMed  Google Scholar 

  4. Lafosse L, Brozska R, Toussaint B, et al. The outcome and structural integrity of arthroscopic rotator cuff repair with use of the double-row suture anchor technique. J Bone Joint Surg Am. 2007;89(7):1533–41.

    Article  PubMed  Google Scholar 

  5. Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86-A(2):219–24.

    PubMed  Google Scholar 

  6. Slabaugh MA, Nho SJ, Grumet RC, et al. Does the literature confirm superior clinical results in radiographically healed rotator cuffs after rotator cuff repair? Arthroscopy. 2010;26(3):393–403.

    Article  PubMed  Google Scholar 

  7. Woo SLY, An KN, Arnoczky SP, Wayne JS, Fithian DC, Myers BS. Anatomy, biology, and biomechanics of tendon, ligament, and meniscus. In: Simon SR, editor. Orthopaedic basic science. Rosemont: American Academy of Orthopaedic Surgeons; 1994. p. 45–87.

    Google Scholar 

  8. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel: a biomechanical and histologic study in the dog. J Bone Joint Surg Am. 1993;75:1795–803.

    PubMed  CAS  Google Scholar 

  9. • Gulotta LV, Rodeo SA. Growth factors for rotator cuff repair. Clin Sports Med. 2009 Jan;28(1):13-23. Comprehensive review of research employing specific growth factors to augment rotator cuff repair.

    Article  PubMed  Google Scholar 

  10. • Longo UG, Lamberti A, Maffulli N, Denaro V. Tissue engineered biological augmentation for tendon healing: a systematic review. Br Med Bull. 2011;98:31-59. Excellent review of tendon engineering strategies aimed at improving tendon healing with growth factors, platelet-rich plasma, gene therapy, and stem cells.

    Article  PubMed  Google Scholar 

  11. • Cheung EV, Silverio L, Sperling JW. Strategies in biologic augmentation of rotator cuff repair: a review. Clin Orthop Relat Res. 2010 Jun;468(6):1476-84. Additional review of prior research using biologics to augment rotator cuff repair, including allograft and autograft tendon augmentation, extracellular matrices, and growth factors.

    Article  PubMed  Google Scholar 

  12. Musgrave DS, Fu FH, Huard J. Gene therapy and tissue engineering in orthopaedic surgery. J Am Acad Orthop Surg. 2002;10(1):6–15.

    PubMed  Google Scholar 

  13. Gamradt SC, Lieberman JR. Genetic modification of stem cells to enhance bone repair. Ann Biomed Eng. 2004;32(1):136–47.

    Article  PubMed  Google Scholar 

  14. Caplan AI. Mesenchymal stem cells and gene therapy. Clin Orthop. 2000;379(suppl):S67–70.

    PubMed  Google Scholar 

  15. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  PubMed  CAS  Google Scholar 

  16. Ouyang HW, Goh JC, Lee EH. Use of bone marrow stromal cells for tendon graft-to-bone healing: histological and immunohistochemical studies in a rabbit model. Am J Sports Med. 2004;32(2):321–7.

    Article  PubMed  Google Scholar 

  17. Lim JK, Hui J, Li L, Thambyah A, Goh J, Lee EH. Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy. 2004;20(9):899–910.

    Article  PubMed  Google Scholar 

  18. Gulotta LV, Kovacevic D, Ehteshami JR, Dager E, Packer JD, Rodeo SA. Application of bone marrow derived mesenchymal stem cells in a rotator cuff repair model. Am J Sports Med. 2009;37(11):2126–33.

    Article  PubMed  Google Scholar 

  19. Augustin G, Antabak A, Davila S. The periosteum. Part 1: Anatomy, histology and molecular biology. Injury. 2004;38:1115–30.

    Article  Google Scholar 

  20. Ritsila VA, Santavirta S, Alhopuro S, Poussa M, Jaroma H, Rubak JM, Eskola A, Hoikka V, Snellman O, Osterman K. Periosteal and perichondral grafting in reconstructive surgery. Clin Orthop Relat Res 302:259–265.

  21. Ritsila V, Alhopuro S, Rintala A. Bone formation with free periosteum. An experimental study. Scand J Plast Reconstr Surg. 1972;6:51–6.

    Article  PubMed  CAS  Google Scholar 

  22. Rubak JM. Osteochondrogenesis of free periosteal grafts in the rabbit iliac crest. Acta Orthop Scand. 1983;54:826–31.

    Article  PubMed  CAS  Google Scholar 

  23. Uddstromer L, Ritsila V. Osteogenic capacity of periosteal grafts. A qualitative and quantitative study of membranous and tubular bone periosteum in young rabbits. Scand J Plast Reconstr Surg. 1978;12:207–14.

    Article  PubMed  CAS  Google Scholar 

  24. Chang CH, Chen CH, Su CY, Liu HT, Yu CM. Rotator cuff repair with periosteum for enhancing tendon-bone healing: a biomechanical and histologic study in rabbits. Knee surg Sports Traumtol Arthrosc. 2009;17(12):1447–53.

    Article  Google Scholar 

  25. Mazzocca AD, McCarthy MB, Chowaniec DM, Cote MP, Arciero RA, Drissi H. Rapid isolation of human stem cells (connective tissue progenitor cells) from the proximal humerus during arthroscopic rotator cuff surgery. Am J Sports Med. 2010;38(7):1438–47. Epub 2010 Apr 7.

    Article  PubMed  Google Scholar 

  26. Galatz LM, Sandell LJ, Rothermich SY, et al. Characteristics of the rat supraspinatus tendon during tendon-to-bone healing after acute injury. J Orthop Res. 2006;24(3):541–50.

    Article  PubMed  CAS  Google Scholar 

  27. • Wurgler-Hauri CC, Dourte LM, Baradet TC, te al. Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. J Shoulder Elbow Surg 2007;16 (Supple 5):S198-203. Study of temporal expression of growth factors after detachment and repair of supraspinatus tendons using immunohistochemical staining at different time points.

    Article  PubMed  Google Scholar 

  28. • Kobayashi M, Itoi E, Minagawa H, et al. Expression of growth factors in the early phase of supraspinatus healing in rabbits. J Shoulder Elbow Surg 2006;15(3):371-7. Assessed expression of several growth factors in the first month after making a full thickness defect in the supraspinatus tendon.

    Article  PubMed  Google Scholar 

  29. Bobacz K, Gruber R, Soleiman A, Graninger WB, Luyten FP, Erlacher L. Cartilage-derived morphogenetic protein-1 and -2 are endogenously expressed in healthy and osteoarthritic human articular chondrocytes and stimulate matrix synthesis. Osteoarthritis cartilage. 2002;10(5):394–401.

    Article  PubMed  CAS  Google Scholar 

  30. Gooch KJ, Blunk T, Courter DL, Sieminski AL, Vunjak-Novakovic G, Freed LE. Bone morphogenetic proteins-2,-12, and -13 modulate in vitro development of engineered cartilage. Tissue Eng. 2002;8(4):591–601.

    Article  PubMed  CAS  Google Scholar 

  31. Li J, Kim KS, Park JS, Elmer WA, Hutton WC, Yoon ST. BMP-2 and CDMP-2 stimulation of chondrocyte production of proteoglycan. J Orthop Sci. 2003;8(6):829–35.

    Article  PubMed  CAS  Google Scholar 

  32. Helm GA, Li JZ, Alden TD, et al. A light and electron microscopic study of ectopic tendon and ligament formation induced by bone morphogenetic protein-13 adenoviral gene therapy. J Neurosurg. 2001;95(2):298–307.

    Article  PubMed  CAS  Google Scholar 

  33. Gulotta LV, Kovacevic D, Packer JD, Ehteshami JR, Rodeo SA. Adenoviral-mediated gene transfer of human bone morphogenetic protein-13 does not improve rotator cuff healing in a rat model. Am J Sports Med. 2011;39(1):180–7.

    Article  PubMed  Google Scholar 

  34. Beredjiklian PK, Favata M, Cartmell JS, Flanagan CL, Crombleholme TM, Soslowsky LJ. Regenerative versus reparative healing in tendon: a study of biomechanical and histological properties in fetal sheep. Ann Biomed Eng. 2003;31:1143–52.

    Article  PubMed  Google Scholar 

  35. Kovacevic D, Fox AJ, Bedi A, Ying L, Deng XH, Warren RF, et al. Calcium-phosphate matrix with or without TGF-{beta}3 improves tendone-bone healing after rotator cuff repair. Am J Sports Med. 2001;39:811–9.

    Article  Google Scholar 

  36. Maning CN, Kim HM, Sakiyama-Elbert S, Galatz LM, Havlioglu N, Thomopoulos S. Sustained delivery of transforming growth factor beta three enhances tendon-to-bone healing in a rat model. J Orthop res. 2011 Jan 18.

  37. Harwood FL, Goomer RS, Gelberman RH, Silva MJ, Amiel D. Regulation of Alpha(v)beta3 and alpha5beta1 integrin receptors by basic fibroblast growth factor and platelet-derived growth factor-BB in intrasynovial flexor tendon cells.

  38. Nakamura N, Shino K, Natsumme T, Matsumoto N, Kaneda Y, Ochi T. Early biological effect of in vivo gene transfer of platelet-derived growth factor (PDGF)-B into healing patellar ligament. Gene Ther. 1998;5(9):1165–70.

    Article  PubMed  CAS  Google Scholar 

  39. Uggen C, Dines J, McGarry M, Grande D, Lee T, Limpisvasti O. The effect of recombinant human platelet derived growth factor BB-coated sutures on rotator cuff healing in a sheep model. Arthroscopy. 2010;26(11):1456–62.

    Article  PubMed  Google Scholar 

  40. Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004;20:563–9.

    Article  PubMed  CAS  Google Scholar 

  41. Gospodarowicz D, Neufeld G, Schweigerer L. Molecular and biological characterization of fibroblast growth factor, an angiogenic factor which also controls the proliferation and differentiation of mesoderm and neuroectoderm derived cells. Cell Differ. 1986;19(1):1–17.

    Article  PubMed  CAS  Google Scholar 

  42. Kato T, Kawaguchi H, Hanada K, Aoyama I, Hiyama Y, Nakamura T, et al. Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J Orthop Res. 1998;16:654–9.

    Article  PubMed  CAS  Google Scholar 

  43. Ishii H, Mizuta A, Sei J, Hirose S, Kudo, Hiraki Y. Healing of full-thickness defects of the articular cartilage in rabbits using fibroblast growth factor-2 and a fibrin sealant. J Bone Joint Surg Br. 2007;89:693–700.

    Article  PubMed  CAS  Google Scholar 

  44. Ide J, Kikukawa K, Hirose J, Iyama K, Sakamoto H, Fujimoto T, et al. The effects of fibroblast growth factor-2 on rotator cuff reconstruction with acellular dermal matrix grafts. Arthroscopy. 2009;25(6):608–16.

    Article  PubMed  Google Scholar 

  45. Asou Y, Nifuji A, Tsuji K, et al. Coordinated expression of scleraxis and Sox9 genes during embryonic development of tendons and cartilage. J Orthop Res. 2002;20(4):827–33.

    Article  PubMed  CAS  Google Scholar 

  46. Brown D, Wagner D, Li X, Richardson JA, Olson EN. Dual role of the basic helix-loop-helix transcription factor scleraxis in mesoderm formation and chondrogenesis during mouse embryogenesis. Development. 1999;126(19):4317–29.

    PubMed  CAS  Google Scholar 

  47. Schweitzer R, Chyung JH, Murtaugh LC, et al. Analysis of the tendon cell fate using scleraxis, a specific marker for tendons and ligaments. Development. 2001;128(19):3855–66.

    PubMed  CAS  Google Scholar 

  48. Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone Marrow-Derived Mesenchymal Stem Cells Transduced With Scleraxis Improve Rotator Cuff Healing in a Rat Model. Am J Sports Med. 2011 Feb 18.

  49. Furumatsu T, Shukunami C, Amemiya-Kudo M, Shimano H, Ozaki T. Scleraxis and E47 cooperatively regulate the Sox9-dependent transcription. Int J Biochem Cell Biol. 2010;42(1):148–56.

    Article  PubMed  CAS  Google Scholar 

  50. Apte SS, Fukai N, Beier DR, Olsen BR. The matrix metalloproteinase-14 (MMP-14) gene is structurally distinct from other MMP genes and is co-expressed with the TIMP-2 gene during mouse embryogenesis. J Biol Chem. 1997;272(41):25511–7.

    Article  PubMed  CAS  Google Scholar 

  51. Holmbeck K, Bianco P, Chrysovergis K, Yamada S, Birkedal-Hansen H. MT1-MMP-dependent, apoptotic remodeling of unmineralized cartilage: a critical process in skeletal growth. J Cell Biol. 2003;163(3):661–71.

    Article  PubMed  CAS  Google Scholar 

  52. Kinoh H, Sato H, Tsunezuka Y, et al. MT-MMP, the cell surface activator of proMMP-2 (pro-gelatinase A), is expressed with its substrate in mouse tissue during embryogenesis. J Cell Sci. 1996;109(Pt 5):953–9.

    PubMed  CAS  Google Scholar 

  53. Gulotta LV, Kovacevic D, Montgomery S, Ehteshami JR, Packer JD, Rodeo SA. Stem cells genetically modified with the developmental gene MT1-MMP improve regeneration of the supraspinatus tendon-to-bone insertion site. Am J Sports Med. 2010;38(7):1429–37.

    Article  PubMed  Google Scholar 

  54. Cole BJ, Gomoll AH, Yanke A, et al. Biocampatibility of a polymer patch for rotator cuff repair. Knee Surg Sports Traumatol arthrosc. 2007;15(5):632–7.

    Article  PubMed  Google Scholar 

  55. Losi P, Munao A, Spiller D, et al. Evaluation of a new composite pros-thesis for the repai of abdominal wall defects. J Mater Sci Mater Med. 2007;18(10):1939–44.

    Article  PubMed  CAS  Google Scholar 

  56. Ishii Y, Sakamoto S, Kronengold RT, et al. a novel bioengineered small-caliber vascular graft incorpoarating heparin and sirolimus: excellent 6-month patency. J Thorac Cardiovasc Surg. 2008;135(6):1237–45.

    Article  PubMed  Google Scholar 

  57. Santoni BG, McGilvray KC, Lyons AS, Bansal M, Turner AS, Macgillivray JD, et al. Biomechanical analysis of an ovine rotator cuff repair via porous patch augmentation in a chronic rupture model. Am J Sports Med. 2010;38(4):679–86.

    Article  PubMed  Google Scholar 

  58. Aoki M, Miyamoto S, Okamura K, Yamashita T, Ikada Y, Matsuda S. Tensile properties and biological response of poly(L-lactic acid) felt graft: an experimental trial for rotator-cuff reconstruction. J Biomed Mater Res B Appl Biomater. 2004;71:252–9.

    Article  PubMed  Google Scholar 

  59. Koh JL, Szomor Z, Murrell GA, Warren RF. Supplementation of rotator cuff repair with a bioresorbable scaffold. Am J Sports Med. 2002;30:410–3.

    PubMed  Google Scholar 

  60. MacGillivray JD, Fealy S, Terry MA, Koh JL, Nixon AJ, Warren RF. Biomechanical evaluation of a rotator cuff defect model augmented with a bioresorbable scaffold in goats. J Shoulder Elbow Surg. 2006;15:639–44.

    Article  PubMed  Google Scholar 

  61. Derwin KA, Codsi MJ, Milks RA, Baker AR, McCarron JA, Iannotti JP. Rotator cuff repair augmentation in a canine model with use of a woven poly-L-lactide device. J Bone Joint Surg Am. 2009;91(5):1159–71.

    Article  PubMed  Google Scholar 

  62. Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24:2077.

    Article  PubMed  CAS  Google Scholar 

  63. Garreta E, Gasset D, Semino C, Borros S. Fabrication of a three-dimensional nanostructured biomaterial for tissue engineering of bone. Biomol Eng. 2007;24:75.

    Article  PubMed  CAS  Google Scholar 

  64. Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials. 2007;28:1967.

    Article  PubMed  CAS  Google Scholar 

  65. Nerurkar NL, Elliott DM, Mauck RL. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res. 2007;25:1018.

    Article  PubMed  CAS  Google Scholar 

  66. Li WJ, Danielson KG, Alexander PG, Tuan RS. Biological response of chondrocytes cultured in threedimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A. 2003;67:1105.

    Article  PubMed  Google Scholar 

  67. Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials. 2005;26:1261.

    Article  PubMed  CAS  Google Scholar 

  68. Bashur CA, Dahlgren LA, Goldstein AS. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D, L-lactic-co-glycolic acid) meshes. Biomaterials. 2006;27:5681.

    Article  PubMed  CAS  Google Scholar 

  69. Moffat KL, Kwei AS, Spalazzi JP, Doty SB, Levine WN, Lu HH. Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng Part A. 2009;15(1):115–26.

    Article  PubMed  CAS  Google Scholar 

  70. Badylak SF, Record R, Lindberg K, Hodde J, Park K. Small intestinal submucosa: a substrate for in vitro cell growth. J Biomater Sci Polym Ed. 1998;9:863–78.

    Article  PubMed  CAS  Google Scholar 

  71. McPherson TB, Liang H, Record RD, Badylak SF. Galalpha(1,3)Gal epitope in porcine small intestinal submucosa. Tissue Eng. 2000;6:233–9.

    Article  PubMed  CAS  Google Scholar 

  72. • Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ. Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg Am. 2006 Jun;88(6):1238-44. One of few randomized controlled trials in humans assessing augmentation of rotator cuff healing with xenograft.

    Article  PubMed  Google Scholar 

  73. Malcarney HL, Bonar F, Murrell GA. Early inflammatory reaction after rotator cuff repair with a porcine submucosa implant: a report of 4 cases. Am J Sports Med. 2005;33:907–11.

    Article  PubMed  Google Scholar 

  74. Gilbert TW, Freund JM, Badylak SF. Quantification of DNA in biologic scaffold materials. J Surg Res. 2009;152:135–9.

    Article  PubMed  CAS  Google Scholar 

  75. Badhe SP, Lawrence TM, Smith FD, Lunn PG. An assessment of porcine dermal xenograft as an augmentation graft in the treatment of extensive rotator cuff tears. J Shoulder Elbow Surg. 2008;17(1 Suppl):35S–9S.

    Article  PubMed  Google Scholar 

  76. Phipatanakul WP, Petersen SA. Porcine small intestine submucosa xenograft augmentation in repair of massive rotator cuff tears. Am J Orthop. 2009;38(11):572–5.

    PubMed  Google Scholar 

  77. Ide J, Kikukawa K, Hirose J, Iyama K, Sakamoto H, Mizuta H. Reconstruction of large rotator-cuff tears with acellular dermal matrix grafts in rats. J Shoulder Elbow Surg. 2009;18(2):288–95.

    Article  PubMed  Google Scholar 

  78. Ide J, Kikukawa K, Hirose J, Iyama K, Sakamoto H, Mizuta H. The effects of fibroblast growth factor-2 on rotator cuff reconstruction with acellular dermal matrix grafts. Arthroscopy. 2009;25(6):608–16.

    Article  PubMed  Google Scholar 

  79. Wong I, Burns J, Snyder S. Arthroscopic GraftJacket repair of rotator cuff tears. J Shoulder Elbow Surg. 2010;19(2 Suppl):104–9.

    Article  PubMed  Google Scholar 

  80. Gamradt SC, Rodeo SA, Warren RF. Platelet rich plasma in rotator cuff repair. Techniques in Orthopedics. 2007;22(1):26–33.

    Article  Google Scholar 

  81. Kon E, Filardo G, Delcogliano M, et al. Platelet-rich plasma: new clinical application: a pilot study for treatment of jumper’s knee. Injury. 2009;40:598–603.

    Article  PubMed  Google Scholar 

  82. Orrego M, Larrain C, Rosales J, et al. Effects of platelet concentrate and a bone plug on the healing of hamstring tendons in a bone tunnel. Arthroscopy. 2008;24:1373–80.

    Article  PubMed  Google Scholar 

  83. • Randelli P, Arrigone P, Ragone V, Aliprandi A, Cabitza P. Platelet rich plasma in arthroscopic rotator cuff repair: a prospective RCT study, 2-year follow-up. Journal of Shoulder and Elbow Surgery 2011, 20: 518–528. A prospective randomized controlled trial in humans evaluating platelet-rich plasma after rotator cuff repair.

    Article  PubMed  Google Scholar 

  84. • Castricini R, Longo UG, De Benedetto M, Panfoli N, Pirani P, Zini R, Maffulli N, Denaro V. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial. Am J Sports Med. 2011 Feb;39(2):258–265. A prospective randomized controlled trial in humans evaluating platelet-rich plasma after rotator cuff repair.

    Article  PubMed  Google Scholar 

  85. Rodeo SA, Delos D, The effect of platelet-rich fibrin matrix on rotator cuff tendon healing: a prospective, randomized clinical study. Williams RJ, Adler R, Pearle AD, Warren RF. AOSSM Specialty Day 2011.

Download references

Disclosures

S.R. Montgomery: none; F.A. Petrigliano: none; S.C. Gamradt: consultant to Depuy-Mitek, receives payment for lectures from Depuy-Mitek.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott R. Montgomery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montgomery, S.R., Petrigliano, F.A. & Gamradt, S.C. Biologic augmentation of rotator cuff repair. Curr Rev Musculoskelet Med 4, 221–230 (2011). https://doi.org/10.1007/s12178-011-9095-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-011-9095-6

Keywords

Navigation