Skip to main content

Advertisement

Log in

Autonomic Control of the Aging Heart

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Cardiovascular diseases including hypertension, myocardial infarction, stroke, and heart failure continue to account for the majority of deaths in the developed world. Whilst the incidence of these clinical disorders does increase with age, outcomes in affected patients tend to be disproportionately adverse with advancing years. In this context it is important to understand the various compensatory processes which become activated in cardiovascular disease. In particular, the autonomic nervous system is known to play a key pathogenic role in the cause and response to many of these conditions. The normal aging process is accompanied by a complex series of changes in the autonomic control of the cardiovascular system, favoring heightened cardiac sympathetic tone with parasympathetic withdrawal and blunted cardiovagal baroreflex sensitivity. Together these changes have the potential to further magnify the effects of concomitant cardiovascular disease. Attention to the mechanisms of these changes and the development of appropriate therapies may serve to reduce the added influence of age on outcome in patients experiencing cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aggarwal, A., Esler, M. D., et al. (2001). Evidence for functional presynaptic alpha-2 adrenoceptors and their down-regulation in human heart failure. Journal of American College of Cardiology, 37, 1246–1251.

    Article  CAS  Google Scholar 

  • Aggarwal, A., Esler, M. D., et al. (2002). Norepinephrine turnover is increased in suprabulbar subcortical brain regions and is related to whole-body sympathetic activity in human heart failure. Circulation, 105, 1031–1033.

    Article  PubMed  CAS  Google Scholar 

  • Akselrod, S., Gordon, D., et al. (1985). Hemodynamic regulation: Investigation by spectral analysis. American Journal of Physiology, 249, H867–H875.

    PubMed  CAS  Google Scholar 

  • Allessie, M. A., Boyden, P. A., et al. (2001). Pathophysiology and prevention of atrial fibrillation. Circulation, 103, 769–777.

    PubMed  CAS  Google Scholar 

  • Arbab-Zadeh, A., Dijk, E., et al. (2004). Effect of aging and physical activity on left ventricular compliance. Circulation, 110, 1799–1805.

    Article  PubMed  Google Scholar 

  • Borton, M., & Docherty, J. R. (1989). The effects of ageing on neuronal uptake of noradrenaline in the rat. Naunyn Schmiedebergs Archives of Pharmacology, 340, 139–143.

    Article  CAS  Google Scholar 

  • Brodde, O. E., Konschak, U., et al. (1998). Cardiac muscarinic receptors decrease with age. Journal of Clinical Investigation, 101, 471–478.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C. M., Wu, T. J., et al. (2001). Nerve sprouting and sympathetic hyperinnervation in a canine model of atrial fibrillation produced by prolonged right atrial pacing. Circulation, 103, 22–25.

    PubMed  CAS  Google Scholar 

  • De Meersman, R. E., & Stein, P. K. (2007). Vagal modulation and aging. Biological Psychology, 74, 165–173.

    Article  PubMed  Google Scholar 

  • Esler, M., Hastings, J., et al. (2002). The influence of aging on the human sympathetic nervous system and brain norepinephrine turnover. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 282, R909–R916.

    PubMed  CAS  Google Scholar 

  • Esler, M., Jackman, G., et al. (1979). Determination of norepinephrine apparent release rate and clearance in humans. Life Science, 25, 1461–1470.

    Article  CAS  Google Scholar 

  • Esler, M., Jennings, G., et al. (1990). Overflow of catecholamine neurotransmitters to the circulation: Source, fate, and functions. Physiological Review, 70, 963–985.

    CAS  Google Scholar 

  • Esler, M., Kaye, D., et al. (1995a). Effects of aging on epinephrine secretion and regional release of epinephrine from the human heart. The Journal of Clinical Endocrinology and Metabolism, 80, 435–442.

    Article  PubMed  CAS  Google Scholar 

  • Esler, M. D., Turner, A. G., et al. (1995b). Aging effects on human sympathetic neuronal function. American Journal of Physiology, 268, R278–R285.

    PubMed  CAS  Google Scholar 

  • Fleg, J., O’Connor, F., et al. (1995). Impact of age on the cardiovascular response todynamic upright exercise in healthy men and women. Journal of Applied Physiology, 78, 890–900.

    PubMed  CAS  Google Scholar 

  • Gould, P. A., Yii, M., et al. (2006). Evidence for increased atrial sympathetic innervation in persistent human atrial fibrillation. Pacing and Clinical Electrophysiology, 29, 821–829.

    Article  PubMed  Google Scholar 

  • Grassi, G., & Esler, M. (1999). How to assess sympathetic activity in humans. Journal of Hypertension, 17, 719–734.

    Article  PubMed  CAS  Google Scholar 

  • Hasking, G. J., Esler, M. D., et al. (1986). Norepinephrine spillover to plasma in patients with congestive heart failure: Evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation, 73, 615–621.

    PubMed  CAS  Google Scholar 

  • Irigoyen, M. C., Moreira, E. D., et al. (2000). Aging and baroreflex control of RSNA and heart rate in rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 279, R1865–R1871.

    PubMed  CAS  Google Scholar 

  • Kaye, D., & Esler, M. (2005). Sympathetic neuronal regulation of the heart in aging and heart failure. Cardiovascular Research, 66, 256–264.

    Article  PubMed  CAS  Google Scholar 

  • Kaye, D. M., Jennings, G. L., et al. (1998). Differential effect of acute baroreceptor unloading on cardiac and systemic sympathetic tone in congestive heart failure. Jorunal of the American College of Cardiology, 31, 583–587.

    Article  CAS  Google Scholar 

  • Kaye, D. M., Lambert, G. W., et al. (1994). Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. Jorunal of the American College of Cardiology, 23, 570–578.

    Article  CAS  Google Scholar 

  • Kingwell, B. A., Thompson, J. M., et al. (1994). Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic nerve activity during human sympathetic nervous activation and failure. Circulation, 90, 234–240.

    PubMed  CAS  Google Scholar 

  • La Rovere, M. T., Specchia, G., et al. (1988). Baroreflex sensitivity, clinical correlates, and cardiovascular mortality among patients with a first myocardial infarction. Circulation, 78, 816–824.

    PubMed  CAS  Google Scholar 

  • Lambert, G. W., Ferrier, C., et al. (1994). Monoaminergic neuronal activity in subcortical brain regions in essential hypertension. Blood Press, 3, 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Leenen, F. H., Coletta, E., et al. (2005). Aging and cardiac responses to epinephrine in humans: Role of neuronal uptake. American Journal of Physiology. Heart and Circulatory Physiology, 288, H2498–H2503.

    Article  PubMed  CAS  Google Scholar 

  • Leimbach, W. N., Jr., Wallin, B. G., et al. (1986). Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation, 73, 913–919.

    PubMed  Google Scholar 

  • Li, S. T., Holmes, C., et al. (2003). Aging-related changes in cardiac sympathetic function in humans, assessed by 6-18F-fluorodopamine PET scanning. Journal of Nuclear Medicine, 44, 1599–1603.

    PubMed  CAS  Google Scholar 

  • Masi, C. M., Hawkley, L. C., et al. (2007). Respiratory sinus arrhythmia and disease of aging: Obesity, diabetes mellitus and hypertension. Biological Psychology, 74, 212–223.

    Article  PubMed  Google Scholar 

  • Meredith, I. T., Broughton, A., et al. (1991). Evidence of a selective increase in cardiac sympathetic activity in patients with sustained ventricular arrhythmias [see comments]. The New England Journal of Medicine, 325, 618–624.

    Article  PubMed  CAS  Google Scholar 

  • Monahan, K. (2007). Effect of aging on baroreflex function in humans. American Journal of Physiology, 293, R3–R12.

    PubMed  CAS  Google Scholar 

  • Monahan, K., Dinenno, F., et al. (2000). Regular aerobic exercise modulates age-associated declines in cardiovagal baroreflex sensitivity in healthy men. Journal of Physiology, 529, 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Narkiewicz, K., Phillips, B. G., et al. (2005). Gender-selective interaction between aging, blood pressure, and sympathetic nerve activity. Hypertension, 45, 522–525.

    Article  PubMed  CAS  Google Scholar 

  • Pagani, M., Lombardi, F., et al. (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circulation Research, 59, 178–193.

    PubMed  CAS  Google Scholar 

  • Pickering, T. G., Gribbin, B., et al. (1972). Effects of autonomic blockade on the Baroreflex in man at rest and during exercise. Circulation Research, 30, 177–185.

    PubMed  CAS  Google Scholar 

  • Poller, U., Nedelka, G., et al. (1997). Age-dependent changes in cardiac muscarinic receptor function in healthy volunteers. Journal of American College of Cardiology, 29, 187–193.

    Article  CAS  Google Scholar 

  • Schlaich, M. P., Lambert, E., et al. (2004). Sympathetic augmentation in hypertension: Role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation. Hypertension, 43, 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Seals, D. R., & Esler, M. D. (2000). Human ageing and the sympathoadrenal system. Journal of Physiology, 528, 407–417.

    Article  PubMed  CAS  Google Scholar 

  • Smyth, H. S., Sleight, P., et al. (1969). Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity. Circulation Research, 24, 109–121.

    PubMed  CAS  Google Scholar 

  • White, M., & Leenen, F. H. (1994). Aging and cardiovascular responsiveness to beta-agonist in humans: Role of changes in beta-receptor responses versus baroreflex activity. Clinical Pharmacology and Therapeutics, 56, 543–553.

    Article  PubMed  CAS  Google Scholar 

  • Wijffels, M. C., Kirchhof, C. J., et al. (1995). Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation, 92, 1954–1968.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

DK and ME are supported by grants from the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Kaye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaye, D.M., Esler, M.D. Autonomic Control of the Aging Heart. Neuromol Med 10, 179–186 (2008). https://doi.org/10.1007/s12017-008-8034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-008-8034-1

Keywords

Navigation