Skip to main content

Advertisement

Log in

Abstract

The diffusing capacity for carbon monoxide (DLCO) is a commonly performed and clinically useful pulmonary function test that provides a quantitative measure of gas transfer in the lungs. It is valuable for evaluating and managing patients with a wide variety of pulmonary disorders, especially patients with interstitial lung disease, pulmonary vascular disease, and obstructive lung disease. Important aspects of the DLCO test are discussed including the physiologic principles governing diffusion, testing technique and equipment, technical and physiologic factors influencing DLCO variability, DLCO test interpretation, and the clinical utility of DLCO measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DLCO :

diffusing capacity for carbon monoxide

CO:

carbon monoxide

COPD:

chronic obstructive pulmonary disease

ATS:

American Thoracic Society

ERS:

European Respiratory Society

Hb:

hemoglobin

\(\mathop V\limits^ \bullet \)gas:

gas transfer per unit time

DM :

membrane component of diffusion

θ :

rate at which carbon monoxide binds with hemoglobin

VA:

alveolar volume

VC :

pulmonary capillary blood volume

STPD:

standard temperature, pressure, dry conditions

References

  1. Goedhart DM, Zanen P, Lammers JW (2006) Relevant and redundant lung function parameters in discriminating asthma from COPD. COPD 3:33–39

    PubMed  Google Scholar 

  2. Knudson RJ, Kaltenborn WT, Burrows B (1990) Single breath carbon monoxide transfer factor in different forms of chronic airflow obstruction in a general population sample. Thorax 45:514–519

    Article  CAS  PubMed  Google Scholar 

  3. Hughes J (1999) Diffusing capacity (transfer factor) for carbon monoxide. WB Saunders, London

    Google Scholar 

  4. Macintyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CP, Brusasco V et al (2005) Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J 26:720–735

    Article  CAS  PubMed  Google Scholar 

  5. Krogh M (1914) Diffusion of gases through the lungs of man. J Physiol 49:271–300

    Google Scholar 

  6. Ogilvie CM, Forster RE, Blakemore WS, Morton JW (1957) A standardized breath holding technique for the clinical measurement of the diffusing capacity of the lung for carbon monoxide. J Clin Invest 36:1–17

    Article  PubMed  Google Scholar 

  7. Cotes JE, Chinn DJ, Miller MR (2006) Transfer factor (diffusing capacity) for carbon monoxide and nitric oxide. In: Cotes J (ed) Lung function. Blackwell, Oxford, pp 234–257

    Chapter  Google Scholar 

  8. Roughton FJW, Forster RE (1957) Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J Appl Phsiol 11:290–302

    CAS  Google Scholar 

  9. Crapo RO, Jensen RL, Wanger JS (2001) Single-breath carbon monoxide diffusing capacity. Clin Chest Med 22:637–649

    Article  CAS  PubMed  Google Scholar 

  10. Grahan BL, Mink JT, Cotton DC (1996) Implementing the three-equation method of measuring single breath carbon monoxide diffusing capacity. Can Respir J 3:247–257

    Google Scholar 

  11. Crapo RO, Morris AH (1981) Standardized single breath normal values for carbon monoxide diffusing capacity. Am Rev Respir Dis 123:185–189

    CAS  PubMed  Google Scholar 

  12. Kanner RE, Crapo RO (1986) The relationship between alveolar oxygen tension and the single-breath carbon monoxide diffusing capacity. Am Rev Respir Dis 133:676–678

    CAS  PubMed  Google Scholar 

  13. Huang YC, Macintyre NR (1992) Real-time gas analysis improves the measurement of single-breath diffusing capacity. Am Rev Respir Dis 146:946–950

    CAS  PubMed  Google Scholar 

  14. Jones R, Meade F (1961) A theoretical and experimental analysis of anomalies in the estimation of pulmonary diffusing capacity by the single breath method. Q J Exp Physiol 46:131–143

    CAS  Google Scholar 

  15. Punjabi NM, Shade D, Patel AM, Wise RA (2003) Measurement variability in single-breath diffusing capacity of the lung. Chest 123:1082–1089

    Article  PubMed  Google Scholar 

  16. Kangalee KM, Abboud RT (1992) Interlaboratory and intralaboratory variability in pulmonary function testing. A 13-year study using a normal biologic control. Chest 101:88–92

    Article  CAS  PubMed  Google Scholar 

  17. Robson AG, Innes JA (2001) Short term variability of single breath carbon monoxide transfer factor. Thorax 56:358–361

    Article  CAS  PubMed  Google Scholar 

  18. Johnson DC (2000) Importance of adjusting carbon monoxide diffusing capacity (DLCO) and carbon monoxide transfer coefficient (KCO) for alveolar volume. Respir Med 94:28–37

    Article  CAS  PubMed  Google Scholar 

  19. Smith TR, Rankin J (1969) Pulmonary diffusing capacity and the capillary bed during Valsalva and Muller maneuvers. J Appl Physiol 27:826–833

    CAS  PubMed  Google Scholar 

  20. Cotes JE, Chinn DJ, Quanjer PH, Roca J, Yernault JC (1993) Standardization of the measurement of transfer factor (diffusing capacity). Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J 6:41–52

    Google Scholar 

  21. Neas LM, Schwartz J (1996) The determinants of pulmonary diffusing capacity in a national sample of U.S. adults. Am J Respir Crit Care Med 153:656–664

    CAS  PubMed  Google Scholar 

  22. Frey TM, Crapo RO, Jensen RL, Elliott CG (1987) Diurnal variation of the diffusing capacity of the lung: is it real? Am Rev Respir Dis 136:1381–1384

    CAS  PubMed  Google Scholar 

  23. Sansores RH, Abboud RT, Kennell C, Haynes N (1995) The effect of menstruation on the pulmonary carbon monoxide diffusing capacity. Am J Respir Crit Care Med 152:381–384

    CAS  PubMed  Google Scholar 

  24. Huang YC, Helms MJ, Macintyre NR (1994) Normal values for single exhalation diffusing capacity and pulmonary capillary blood flow in sitting and supine positions and during mild exercise. Chest 105:501–508

    Article  CAS  PubMed  Google Scholar 

  25. Zavorsky GS, Quiron KB, Massarelli PS, Lands LC (2004) The relationship between single-breath diffusion capacity of the lung for nitric oxide and carbon monoxide during various exercise intensities. Chest 125:1019–1027

    Article  PubMed  Google Scholar 

  26. Johns DP, Berry D, Maskrey M, Wood-Baker R, Reid DW, Walters EH et al (2004) Decreased lung capillary blood volume post-exercise is compensated by increased membrane diffusing capacity. Eur J Appl Physiol 93:96–101

    Article  CAS  PubMed  Google Scholar 

  27. Iversen ET, Sorensen T, Heckscher T, Jensen JI (1999) Effect of terbutaline on exercise capacity and pulmonary function in patients with chronic obstructive pulmonary disease. Lung 177:263–271

    Article  CAS  PubMed  Google Scholar 

  28. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R et al (2005) Interpretative strategies for lung function tests. Eur Respir J 26:948–968

    Article  CAS  PubMed  Google Scholar 

  29. Frans A, Nemery B, Veriter C, Lacquet L, Francis C (1997) Effect of alveolar volume on the interpretation of single breath DLCO. Respir Med 91:263–273

    Article  CAS  PubMed  Google Scholar 

  30. Punjabi NM, Shade D, Wise RA (1998) Correction of single-breath helium lung volumes in patients with airflow obstruction. Chest 114:907–918

    Article  CAS  PubMed  Google Scholar 

  31. Kendrick AH (1996) Comparison of methods of measuring static lung volumes. Monaldi Arch Chest Dis 51:431–439

    CAS  PubMed  Google Scholar 

  32. Steenhuis LH, Groen HJ, Koeter GH, van der Mark TW (2000) Diffusion capacity and haemodynamics in primary and chronic thromboembolic pulmonary hypertension. Eur Respir J 16:276–281

    Article  CAS  PubMed  Google Scholar 

  33. Sun XG, Hansen JE, Oudiz RJ, Wasserman K (2003) Pulmonary function in primary pulmonary hypertension. J Am Coll Cardiol 41:1028–1035

    Article  PubMed  Google Scholar 

  34. Epler GR, McLoud TC, Gaensler EA, Mikus JP, Carrington CB (1978) Normal chest roentgenograms in chronic diffuse infiltrative lung disease. N Engl J Med 298:934–939

    CAS  PubMed  Google Scholar 

  35. Aduen JF, Zisman DA, Mobin SI, Venegas C, Alvarez F, Biewend M et al (2007) Retrospective study of pulmonary function tests in patients presenting with isolated reduction in single-breath diffusion capacity: implications for the diagnosis of combined obstructive and restrictive lung disease. Mayo Clin Proc 82:48–54

    Article  PubMed  Google Scholar 

  36. Cotton DJ, Soparkar GR, Grahan BL (1996) Diffusing capacity in the clinical assessment of chronic airflow limitation. Med Clin North Am 80:549–564

    CAS  PubMed  Google Scholar 

  37. Mohsenifar Z, Lee SM, Diaz P, Criner G, Sciurba F, Ginsburg M et al (2003) Single-breath diffusing capacity of the lung for carbon monoxide: a predictor of PaO2, maximum work rate, and walking distance in patients with emphysema. Chest 123:1394–1400

    Article  PubMed  Google Scholar 

  38. Cerveri I, Dore R, Corsico A, Zoia MC, Pellegrino R, Brusasco V et al (2004) Assessment of emphysema in COPD: a functional and radiologic study. Chest 125:1714–1718

    Article  PubMed  Google Scholar 

  39. Collard P, Njinou B, Nejadnik B, Keyeux A, Frans A (1994) Single breath diffusing capacity for carbon monoxide in stable asthma. Chest 105:1426–1429

    Article  CAS  PubMed  Google Scholar 

  40. Martinez FJ, Flaherty K (2006) Pulmonary function testing in idiopathic interstitial pneumonias. Proc Am Thorac Soc 3:315–321

    Article  PubMed  Google Scholar 

  41. Wasfi YS, Rose CS, Murphy JR, Silveira LJ, Grutters JC, Inoue Y et al (2006) A new tool to assess sarcoidosis severity. Chest 129:1234–1245

    Article  PubMed  Google Scholar 

  42. Nagai S, Kitaichi M, Itoh H, Nishimura K, Izumi T, Colby TV (1998) Idiopathic nonspecific interstitial pneumonia/fibrosis: comparison with idiopathic pulmonary fibrosis and BOOP. Eur Respir J 12:1010–1019

    Article  CAS  PubMed  Google Scholar 

  43. Dimopoulou I, Galani H, Dafni U, Samakovii A, Roussos C, Dimopoulos MA (2002) A prospective study of pulmonary function in patients treated with paclitaxel and carboplatin. Cancer 94:452–458

    Article  CAS  PubMed  Google Scholar 

  44. Ngan HY, Liang RH, Lam WK, Chan TK (1993) Pulmonary toxicity in patients with non-Hodgkin's lymphoma treated with bleomycin-containing combination chemotherapy. Cancer Chemother Pharmacol 32:407–409

    Article  CAS  PubMed  Google Scholar 

  45. Flaherty KR, Andrei AC, Murray S, Fraley C, Colby TV, Travis WD et al (2006) Idiopathic pulmonary fibrosis: prognostic value of changes in physiology and six-minute-walk test. Am J Respir Crit Care Med 174:803–809

    Article  PubMed  Google Scholar 

  46. Sietsma K (1990) Sarcoidosis and the diffusing capacity for carbon monoxide. Sarcoidosis 7:12–14

    CAS  PubMed  Google Scholar 

  47. Camus P, Martin WJ 2nd, Rosenow EC 3rd (2004) Amiodarone pulmonary toxicity. Clin Chest Med 25:65–75

    Article  PubMed  Google Scholar 

  48. Puri S, Baker BL, Dutka DP, Oakley CM, Hughes JM, Cleland JG (1995) Reduced alveolar-capillary membrane diffusing capacity in chronic heart failure. Its pathophysiological relevance and relationship to exercise performance. Circulation 91:2769–2774

    CAS  PubMed  Google Scholar 

  49. Gehlbach BK, Geppert E (2004) The pulmonary manifestations of left heart failure. Chest 125:669–682

    Article  PubMed  Google Scholar 

  50. Saydain G, Beck KC, Decker PA, Cowl CT, Scanlon PD (2004) Clinical significance of elevated diffusing capacity. Chest 125:446–452

    Article  PubMed  Google Scholar 

  51. Coulter TD, Stoller JK (2000) What causes an elevated diffusing capacity? Respir Care 45:531–532

    CAS  PubMed  Google Scholar 

  52. Stewart RI (1988) Carbon monoxide diffusing capacity in asthmatic patients with mild airflow limitation. Chest 94:332–336

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Hegewald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegewald, M.J. Diffusing Capacity. Clinic Rev Allerg Immunol 37, 159–166 (2009). https://doi.org/10.1007/s12016-009-8125-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-009-8125-2

Keywords

Navigation