Skip to main content

Advertisement

Log in

Pathophysiology and diagnosis of cancer drug induced cardiomyopathy

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The clinical manifestations of anti-cancer drug associated cardiac side effects are diverse and can range from acutely induced cardiac arrhythmias to Q–T interval prolongation, changes in coronary vasomotion with consecutive myocardial ischemia, myocarditis, pericarditis, severe contractile dysfunction, and potentially fatal heart failure. The pathophysiology of these adverse effects is similarly heterogeneous and the identification of potential mechanisms is frequently difficult since the majority of cancer patients is not only treated with a multitude of cancer drugs but might also be exposed to potentially cardiotoxic radiation therapy. Some of the targets inhibited by new anti-cancer drugs also appear to be important for the maintenance of cellular homeostasis of normal tissue, in particular during exposure to cytotoxic chemotherapy. If acute chemotherapy-induced myocardial damage is only moderate, the process of myocardial remodeling can lead to progressive myocardial dysfunction over years and eventually induce myocardial dysfunction and heart failure. The tools for diagnosing anti-cancer drug associated cardiotoxicity and monitoring patients during chemotherapy include invasive and noninvasive techniques as well as laboratory investigations and are mostly only validated for anthracycline-induced cardiotoxicity and more recently for trastuzumab-associated cardiac dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ewer, M. S., & Lippman, S. M. (2005). Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. Journal of Clinical Oncology, 23, 2900–2902.

    Article  PubMed  CAS  Google Scholar 

  2. Felker, G. M., Thompson, R. E., Hare, J. M., Hruban, R. H., Clemetson, D. E., Howard, D. L., Baughman, K. L., & Kasper, E. K. (2000). Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. The New England Journal of Medicine, 342, 1077–1084.

    Article  PubMed  CAS  Google Scholar 

  3. Mann, D. L. (1999). Mechanisms and models in heart failure: A combinatorial approach. Circulation, 100, 999–1008.

    PubMed  CAS  Google Scholar 

  4. Swain, S. M., Whaley, F. S., & Ewer, M. S. (2003). Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer, 97, 2869–2879.

    Article  PubMed  CAS  Google Scholar 

  5. Lipshultz, S. E., Lipsitz, S. R., Mone, S. M., Goorin, A. M., Sallan, S. E., Sanders, S. P., Orav, E. J., Gelber, R. D., & Colan, S. D. (1995). Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. The New England Journal of Medicine, 332, 1738–1743.

    Article  PubMed  CAS  Google Scholar 

  6. Singal, P. K., & Iliskovic, N. (1998). Doxorubicin-induced cardiomyopathy. The New England Journal of Medicine, 339, 900–905.

    Article  PubMed  CAS  Google Scholar 

  7. Bristow, M. R., Mason, J. W., & Daniels, J. R. (1978). Monitoring of anthracycline cardiotoxicity. Cancer Treatment Reports, 62, 1607–1608.

    PubMed  CAS  Google Scholar 

  8. Mackay, B., Ewer, M. S., Carrasco, C. H., & Benjamin, R. S. (1994). Assessment of anthracycline cardiomyopathy by endomyocardial biopsy. Ultrastructural Pathology, 18, 203–211.

    PubMed  CAS  Google Scholar 

  9. Tokarska-Schlattner, M., Zaugg, M., Zuppinger, C., Wallimann, T., & Schlattner, U. (2006). New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. Journal of Molecular and Cellular Cardiology, 41, 389–405.

    Article  PubMed  CAS  Google Scholar 

  10. Hasinoff, B. B. (1998). Chemistry of dexrazoxane and analogues. Seminars in Oncology, 25, 3–9.

    PubMed  CAS  Google Scholar 

  11. Gille, L., & Nohl, H. (1997). Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity. Free Radical Biology & Medicine, 23, 775–782.

    Article  CAS  Google Scholar 

  12. Doroshow, J. H. (1983). Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Research, 43, 460–472.

    PubMed  CAS  Google Scholar 

  13. Maeda, A., Honda, M., Kuramochi, T., & Takabatake, T. (1998). Doxorubicin cardiotoxicity: diastolic cardiac myocyte dysfunction as a result of impaired calcium handling in isolated cardiac myocytes. Japanese Circulation Journal, 62, 505–511.

    Article  PubMed  CAS  Google Scholar 

  14. Kang, Y. J., Chen, Y., & Epstein, P. N. (1996). Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. The Journal of Biological Chemistry, 271, 12610–12616.

    Article  PubMed  CAS  Google Scholar 

  15. Campbell, D. L., Stamler, J. S., & Strauss, H. C. (1996). Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. The Journal of General Physiology, 108, 277–293.

    Article  PubMed  CAS  Google Scholar 

  16. Arai, M., Tomaru, K., Takizawa, T., Sekiguchi, K., Yokoyama, T., Suzuki, T., & Nagai, R. (1998). Sarcoplasmic reticulum genes are selectively down-regulated in cardiomyopathy produced by doxorubicin in rabbits. Journal of Molecular and Cellular Cardiology, 30, 243–254.

    Article  PubMed  CAS  Google Scholar 

  17. Dodd, D. A., Atkinson, J. B., Olson, R. D., Buck, S., Cusack, B. J., Fleischer, S., & Boucek, R. J. Jr. (1993). Doxorubicin cardiomyopathy is associated with a decrease in calcium release channel of the sarcoplasmic reticulum in a chronic rabbit model. Journal of Clinical Investigation, 91, 1697–1705.

    Article  PubMed  CAS  Google Scholar 

  18. Goldhaber, J. I. (1996). Free radicals enhance Na+/Ca2+ exchange in ventricular myocytes. The American Journal of Physiology, 271, H823–833.

    PubMed  CAS  Google Scholar 

  19. Lim, C. C., Zuppinger, C., Guo, X., Kuster, G. M., Helmes, M., Eppenberger, H. M., Suter, T. M., Liao, R., & Sawyer, D. B. (2004). Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. Journal of Biological Chemistry, 279, 8290–8299.

    Article  PubMed  CAS  Google Scholar 

  20. Aries, A., Paradis, P., Lefebvre, C., Schwartz, R. J., & Nemer, M. (2004). Essential role of GATA-4 in cell survival and drug-induced cardiotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 101, 6975–6980.

    Article  PubMed  CAS  Google Scholar 

  21. Xiong, Y., Liu, X., Lee, C. P., Chua, B. H., & Ho, Y. S. (2006). Attenuation of doxorubicin-induced contractile and mitochondrial dysfunction in mouse heart by cellular glutathione peroxidase. Free Radical Biology & Medicine, 41, 46–55.

    Article  CAS  Google Scholar 

  22. Adderley, S. R., & Fitzgerald, D. J. (1999). Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. Journal of Biological Chemistry, 274, 5038–5046.

    Article  PubMed  CAS  Google Scholar 

  23. Maejima, Y., Adachi, S., Morikawa, K., Ito, H., & Isobe, M. (2005). Nitric oxide inhibits myocardial apoptosis by preventing caspase-3 activity via S-nitrosylation. Journal of Molecular and Cellular Cardiology, 38, 163–174.

    Article  PubMed  CAS  Google Scholar 

  24. Sawyer, D. B., Zuppinger, C., Miller, T. A., Eppenberger, H. M., & Suter, T. M. (2002). Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1beta and anti-erbB2: potential mechanism for trastuzumab-induced cardiotoxicity. Circulation, 105, 1551–1554.

    Article  PubMed  CAS  Google Scholar 

  25. Timolati, F., Ott, D., Pentassuglia, L., Giraud, M. N., Perriard, J. C., Suter, T. M., & Zuppinger, C. (2006). Neuregulin-1 beta attenuates doxorubicin-induced alterations of excitation-contraction coupling and reduces oxidative stress in adult rat cardiomyocytes. Journal of Molecular and Cellular Cardiology, 41, 845–854.

    Article  PubMed  CAS  Google Scholar 

  26. Cote, G. M., Miller, T. A., Lebrasseur, N. K., Kuramochi, Y., & Sawyer, D. B. (2005). Neuregulin-1alpha and beta isoform expression in cardiac microvascular endothelial cells and function in cardiac myocytes in vitro. Experimaental Cell Research, 311, 135–146.

    Article  CAS  Google Scholar 

  27. Kang, Y. J., Chen, Y., Yu, A., Voss-McCowan, M., & Epstein, P. N. (1997). Overexpression of metallothionein in the heart of transgenic mice suppresses doxorubicin cardiotoxicity. Journal of Clinical Investigation, 100, 1501–1506.

    PubMed  CAS  Google Scholar 

  28. Slamon, D., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., Fleming, T., Eiermann, W., Wolter, J. M., Pegram, M., Baselga, J., & Norton, L. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. The New England Journal of Medicine, 344, 783–792.

    Article  PubMed  CAS  Google Scholar 

  29. Drimal, J., Zurova-Nedelcevova, J., Knezl, V., Sotnikova, R., & Navarova, J. (2006). Cardiovascular toxicity of the first line cancer chemotherapeutic agents: doxorubicin, cyclophosphamide, streptozotocin and bevacizumab. Neuro Endocrinology Letters, 27(Suppl 2), 176–179.

    PubMed  CAS  Google Scholar 

  30. Kerkela, R., Grazette, L., Yacobi, R., Iliescu, C., Patten, R., Beahm, C., Walters, B., Shevtsov, S., Pesant, S., Clubb, F. J., Rosenzweig, A., Salomon, R. N., Van Etten, R. A., Alroy, J., Durand, J. B., & Force, T. (2006). Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Medicine, 12, 908–916.

    Article  PubMed  CAS  Google Scholar 

  31. Pegram, M., Hsu, S., Lewis, G., Pietras, R., Beryt, M., Sliwkowski, M., Coombs, D., Baly, D., Kabbinavar, F., & Slamon, D. (1999). Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene, 18, 2241–2251.

    Article  PubMed  CAS  Google Scholar 

  32. Piccart-Gebhart, M. J., Procter, M., Leyland-Jones, B., Goldhirsch, A., Untch, M., Smith, I., Gianni, L., Baselga, J., Bell, R., Jackisch, C., Cameron, D., Dowsett, M., Barrios, C. H., Steger, G., Huang, C. S., Andersson, M., Inbar, M., Lichinitser, M., Lang, I., Nitz, U., Iwata, H., Thomssen, C., Lohrisch, C., Suter, T. M., Ruschoff, J., Suto, T., Greatorex, V., Ward, C., Straehle, C., McFadden, E., Dolci, M. S., & Gelber, R. D. (2005). Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. The New England Journal of Medicine, 353, 1659–1672.

    Article  PubMed  CAS  Google Scholar 

  33. Strasser, F., Betticher, D. C., & Suter, T. M. (2001). Trastuzumab and breast cancer. The New England Journal of Medicine, 345, 996.

    PubMed  CAS  Google Scholar 

  34. Sawyer, D. B., Zuppinger, C., Miller, T. A., Eppenberger, H. M., & Suter, T. M. (2002). Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1 beta and anti-erbB2: potential mechanism for trastuzumab-induced cardiotoxicity. Circulation, 105, 1551–1554.

    Article  PubMed  CAS  Google Scholar 

  35. Pentassuglia, L., Timolati, F., Seifriz, F., Abudukadier, K., Suter, T. M. & Zuppinger, C. (2007). Inhibition of ErbB2/neuregulin signaling augments paclitaxel-induced cardiotoxicity in adult ventricular myocytes. Experimental Cell Research in press.

  36. Ewer, M. S., Vooletich, M. T., Durand, J. B., Woods, M. L., Davis, J. R., Valero, V., & Lenihan, D. J. (2005). Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. Journal of Clinical Oncology, 23, 7820–7826.

    Article  PubMed  CAS  Google Scholar 

  37. Tan-Chiu, E., Yothers, G., Romond, E., Geyer, C. E. Jr., Ewer, M., Keefe, D., Shannon, R. P., Swain, S. M., Brown, A., Fehrenbacher, L., Vogel, V. G., Seay, T. E., Rastogi, P., Mamounas, E. P., Wolmark, N., & Bryant, J. (2005). Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. Journal of Clinical Oncology, 23, 7811–7819.

    Article  PubMed  CAS  Google Scholar 

  38. Dindogru, A., Barcos, M., Henderson, E. S., & Wallace, H. J. Jr. (1978). Electrocardiographic changes following adriamycin treatment. Medical and Pediatric Oncology, 5, 65–71.

    Article  PubMed  CAS  Google Scholar 

  39. Lipshultz, S. E., Rifai, N., Sallan, S. E., Lipsitz, S. R., Dalton, V., Sacks, D. B., & Ottlinger, M. E. (1997). Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation, 96, 2641–2648.

    PubMed  CAS  Google Scholar 

  40. Nousiainen, T., Jantunen, E., Vanninen, E., Remes, J., Vuolteenaho, O., & Hartikainen, J. (1999). Natriuretic peptides as markers of cardiotoxicity during doxorubicin treatment for non-Hodgkin’s lymphoma. European Journal of Haematology, 62, 135–141.

    Article  PubMed  CAS  Google Scholar 

  41. Kouloubinis, A., Kaklamanis, L., Ziras, N., Sofroniadou, S., Makaritsis, K., Adamopoulos, S., Revela, I., Athanasiou, A., Mavroudis, D., & Georgoulias, V. (2007). ProANP and NT-proBNP levels to prospectively assess cardiac function in breast cancer patients treated with cardiotoxic chemotherapy. International Journal of Cardiology.

  42. Shureiqi, I., Cantor, S. B., Lippman, S. M., Brenner, D. E., Chernew, M. E., & Fendrick, A. M. (2002). Clinical and economic impact of multiple gated acquisition scan monitoring during anthracycline therapy. British Journal of Cancer, 86, 226–232.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Suter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuppinger, C., Timolati, F. & Suter, T. Pathophysiology and diagnosis of cancer drug induced cardiomyopathy. Cardiovasc Toxicol 7, 61–66 (2007). https://doi.org/10.1007/s12012-007-0016-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-007-0016-2

Keywords

Navigation