Skip to main content
Log in

Impact of Gestational Diabetes Mellitus in the Maternal-to-Fetal Transport of Nutrients

  • Diabetes and Pregnancy (CJ Homko, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Gestational diabetes mellitus (GDM) is a metabolic disorder prevalent among pregnant women. This disease increases the risk of adverse perinatal outcomes and diseases in the offspring later in life. The human placenta, the main interface between the maternal and fetal blood circulations, is responsible for the maternal-to-fetal transfer of nutrients essential for fetal growth and development. In this context, the aim of this article is to review the latest advances in the placental transport of macro and micronutrients and how they are affected by GDM and its associated conditions, such as elevated levels of glucose, insulin, leptin, inflammation, and oxidative stress. Data analyzed in this article suggest that GDM and its associated conditions, particularly high levels of glucose, leptin, and oxidative stress, disturb placental nutrient transport and, consequently, fetal nutrient supply. As a consequence, this disturbance may contribute to the fetal and postnatal adverse health outcomes associated with GDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Negrato CA, Gomes MB. Historical facts of screening and diagnosing diabetes in pregnancy. Diabetol Metab Syndr. 2013;5:22. doi:10.1186/1758-5996-5-22.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Lappas M, Hiden U, Desoye G, Froehlich J, Hauguel-de Mouzon S, Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal. 2011;15:3061–100. doi:10.1089/ars.2010.3765.

    Article  CAS  PubMed  Google Scholar 

  3. Magon N, Chauhan M. Pregnancy in type 1 diabetes mellitus: how special are special issues? N Am J Med Sci. 2012;4:250–6. doi:10.4103/1947-2714.97202.

    Article  PubMed Central  PubMed  Google Scholar 

  4. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36:S67–74. doi:10.2337/dc13-S067. These useful guidelines provide definitions for the various types of diabetes, including gestational diabetes.

    Article  PubMed Central  Google Scholar 

  5. Shang M, Lin L. IADPSG criteria for diagnosing gestational diabetes mellitus and predicting adverse pregnancy outcomes. J Perinatol. 2014;34:100–4. doi:10.1038/jp.2013.143.

    Article  CAS  PubMed  Google Scholar 

  6. Sacks DA, Hadden DR, Maresh M, Deerochanawong C, Dyer AR, Metzger BE, et al. Frequency of gestational diabetes mellitus at collaborating centers based on IADPSG consensus panel-recommended criteria: the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Diabetes Care. 2012;35:526–8. doi:10.2337/dc11-1641.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Ben-Haroush A, Yogev Y, Hod M. Epidemiology of gestational diabetes mellitus and its association with type 2 diabetes. Diabet Med. 2004;21:103–13. doi:10.1046/j.1464-5491.2003.00985.x.

    Article  CAS  PubMed  Google Scholar 

  8. Lepercq J, Cauzac M, Lahlou N, Timsit J, Girard J, Auwerx J, et al. Overexpression of placental leptin in diabetic pregnancy: a critical role for insulin. Diabetes. 1998;47:847–50. doi:10.2337/diabetes.47.5.847.

    Article  CAS  PubMed  Google Scholar 

  9. Ategbo JM, Grissa O, Yessoufou A, Hichami A, Dramane KL, Moutairou K, et al. Modulation of adipokines and cytokines in gestational diabetes and macrosomia. J Clin Endocrinol Metab. 2006;91:4137–43. doi:10.1210/jc.2006-0980.

    Article  CAS  PubMed  Google Scholar 

  10. Guvener M, Ucar HI, Oc M, Pinar A. Plasma leptin levels increase to a greater extent following on-pump coronary artery surgery in type 2 diabetic patients than in nondiabetic patients. Diabetes Res Clin Pract. 2012;96:371–8. doi:10.1016/j.diabres.2012.01.008.

    Article  CAS  PubMed  Google Scholar 

  11. Plomgaard P, Nielsen AR, Fischer CP, Mortensen OH, Broholm C, Penkowa M, et al. Associations between insulin resistance and TNF-alpha in plasma, skeletal muscle and adipose tissue in humans with and without type 2 diabetes. Diabetologia. 2007;50:2562–71. doi:10.1007/s00125-007-0834-6.

    Article  CAS  PubMed  Google Scholar 

  12. Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, Coustan DR, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358:1991–2002. doi:10.1056/NEJMoa0707943.

    Article  PubMed  Google Scholar 

  13. Pettitt DJ, Lawrence JM, Beyer J, Hillier TA, Liese AD, Mayer-Davis B, et al. Association between maternal diabetes in utero and age at offspring’s diagnosis of type 2 diabetes. Diabetes Care. 2008;31:2126–30. doi:10.2337/dc08-0769.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Biri A, Korucuoglu U, Ozcan P, Aksakal N, Turan O, Himmetoglu O. Effect of different degrees of glucose intolerance on maternal and perinatal outcomes. J Matern Fetal Neonatal Med. 2009;22:473–8. doi:10.1080/14767050802610344.

    Article  PubMed  Google Scholar 

  15. Franks PW, Looker HC, Kobes S, Touger L, Tataranni PA, Hanson RL, et al. Gestational glucose tolerance and risk of type 2 diabetes in young Pima Indian offspring. Diabetes. 2006;55:460–5. doi:10.2337/diabetes.55.02.06.db05-0823.

    Article  CAS  PubMed  Google Scholar 

  16. Takayama-Hasumi S, Yoshino H, Shimisu M, Minei S, Sanaka M, Omori Y. Insulin-receptor kinase is enhanced in placentas from non-insulin-dependent diabetic women with large-for-gestational-age babies. Diabetes Res Clin Pract. 1994;22:107–16. doi:10.1016/0168-8227(94)90043-4.

    Article  CAS  PubMed  Google Scholar 

  17. Coughlan MT, Vervaart PP, Permezel M, Georgiou HM, Rice GE. Altered placental oxidative stress status in gestational diabetes mellitus. Placenta. 2004;25:78–84. doi:10.1016/S0143-4004(03)00183-8.

    Article  CAS  PubMed  Google Scholar 

  18. Herrera E, Ortega-Senovilla H. Disturbances in lipid metabolism in diabetic pregnancy—are these the cause of the problem? Best Pract Res Clin Endocrinol Metab. 2010;24:515–25. doi:10.1016/j.beem.2010.05.006.

    Article  CAS  PubMed  Google Scholar 

  19. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73. doi:10.1056/NEJMra0708473.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lee H, Jang HC, Park HK, Cho NH. Early manifestation of cardiovascular disease risk factors in offspring of mothers with previous history of gestational diabetes mellitus. Diabetes Res Clin Pract. 2007;78:238–45. doi:10.1016/j.diabres.2007.03.023.

    Article  CAS  PubMed  Google Scholar 

  21. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115:e290–6. doi:10.1542/peds.2004-1808.

    Article  PubMed  Google Scholar 

  22. Ornoy A. Growth and neurodevelopmental outcome of children born to mothers with pregestational and gestational diabetes. Pediatr Endocrinol Rev. 2005;3:104–13.

    PubMed  Google Scholar 

  23. Metzger BE, Buchanan TA, Coustan DR, de Leiva A, Dunger DB, Hadden DR, et al. Summary and recommendations of the fifth international workshop-conference on gestational diabetes mellitus. Diabetes Care. 2007;30 Suppl 2:S251–60. doi:10.2337/dc07-s225.

    Article  CAS  PubMed  Google Scholar 

  24. Fowden AL, Forhead AJ, Coan PM, Burton GJ. The placenta and intrauterine programming. J Neuroendocrinol. 2008;20:439–50. doi:10.1111/j.1365-2826.2008.01663.x.

    Article  CAS  PubMed  Google Scholar 

  25. Jansson T, Myatt L, Powell TL. The role of trophoblast nutrient and ion transporters in the development of pregnancy complications and adult disease. Curr Vasc Pharmacol. 2009;7:521–33. doi:10.2174/157016109789043982.

    Article  CAS  PubMed  Google Scholar 

  26. Sandovici I, Hoelle K, Angiolini E, Constancia M. Placental adaptations to the maternal-fetal environment: implications for fetal growth and developmental programming. Reprod Biomed Online. 2012;25:68–89. doi:10.1016/j.rbmo.2012.03.017.

    Article  PubMed  Google Scholar 

  27. Avagliano L, Garo C, Marconi AM. Placental amino acids transport in intrauterine growth restriction. J Pregnancy. 2012;2012:972562. doi:10.1155/2012/972562.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36:62–7.

    Article  CAS  PubMed  Google Scholar 

  29. Lager S, Powell TL. Regulation of nutrient transport across the placenta. J Pregnancy. 2012;2012:179827. doi:10.1155/2012/179827. This article reviews in detail the regulation of placental nutrient transport by a wide variety of conditions.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Day PE, Cleal JK, Lofthouse EM, Hanson MA, Lewis RM. What factors determine placental glucose transfer kinetics? Placenta. 2013;34:953–8. doi:10.1016/j.placenta.2013.07.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Baumann MU, Deborde S, Illsley NP. Placental glucose transfer and fetal growth. Endocrine. 2002;19:13–22. doi:10.1385/ENDO:19:1:13.

    Article  CAS  PubMed  Google Scholar 

  32. Carter AM. Evolution of placental function in mammals: the molecular basis of gas and nutrient transfer, hormone secretion, and immune responses. Physiol Rev. 2012;92:1543–76. doi:10.1152/physrev.00040.2011. This review describes, from an evolutionary perspective, the structure and functions of the placenta.

    Article  CAS  PubMed  Google Scholar 

  33. Cleal JK, Lewis RM. The mechanisms and regulation of placental amino acid transport to the human foetus. J Neuroendocrinol. 2008;20:419–26. doi:10.1111/j.1365-2826.2008.01662.x.

    Article  CAS  PubMed  Google Scholar 

  34. Desforges M, Sibley CP. Placental nutrient supply and fetal growth. Int J Dev Biol. 2010;54:377–90. doi:10.1387/ijdb.082765md.

    Article  CAS  PubMed  Google Scholar 

  35. Lager S, Jansson N, Olsson AL, Wennergren M, Jansson T, Powell TL. Effect of IL-6 and TNF-alpha on fatty acid uptake in cultured human primary trophoblast cells. Placenta. 2011;32:121–7. doi:10.1016/j.placenta.2010.10.012.

    Article  CAS  PubMed  Google Scholar 

  36. Battaglia FC, Regnault TR. Placental transport and metabolism of amino acids. Placenta. 2001;22:145–61. doi:10.1053/plac.2000.0612.

    Article  CAS  PubMed  Google Scholar 

  37. Jansson T. Amino acid transporters in the human placenta. Pediatr Res. 2001;49:141–7. doi:10.1203/00006450-200102000-00003.

    Article  CAS  PubMed  Google Scholar 

  38. Ayuk PT, Sibley CP, Donnai P, D’Souza S, Glazier JD. Development and polarization of cationic amino acid transporters and regulators in the human placenta. Am J Physiol Cell Physiol. 2000;278:C1162–71.

    CAS  PubMed  Google Scholar 

  39. Cunningham P, McDermott L. Long chain PUFA transport in human term placenta. J Nutr. 2009;139:636–9. doi:10.3945/jn.108.098608.

    Article  CAS  PubMed  Google Scholar 

  40. Duttaroy AK. Transport of fatty acids across the human placenta: a review. Prog Lipid Res. 2009;48:52–61. doi:10.1016/j.plipres.2008.11.001.

    Article  CAS  PubMed  Google Scholar 

  41. Haggarty P. Fatty acid supply to the human fetus. Annu Rev Nutr. 2010;30:237–55. doi:10.1146/annurev.nutr.012809.104742.

    Article  CAS  PubMed  Google Scholar 

  42. Solanky N, Requena Jimenez A, D’Souza SW, Sibley CP, Glazier JD. Expression of folate transporters in human placenta and implications for homocysteine metabolism. Placenta. 2010;31:134–43. doi:10.1016/j.placenta.2009.11.017.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao R, Matherly LH, Goldman ID. Membrane transporters and folate homeostasis: intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med. 2009;11:e4. doi:10.1017/S1462399409000969.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Persson A, Johansson M, Jansson T, Powell TL. Na(+)/K(+)-ATPase activity and expression in syncytiotrophoblast plasma membranes in pregnancies complicated by diabetes. Placenta. 2002;23:386–91. doi:10.1053/plac.2002.0807.

    Article  CAS  PubMed  Google Scholar 

  45. Mitchell DM, Juppner H. Regulation of calcium homeostasis and bone metabolism in the fetus and neonate. Curr Opin Endocrinol Diabetes Obes. 2010;17:25–30. doi:10.1097/MED.0b013e328334f041.

    CAS  PubMed  Google Scholar 

  46. Gonzalez-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, et al. Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci U S A. 2001;98:1182–7. doi:10.1073/pnas.021456598.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Brown K, Heller DS, Zamudio S, Illsley NP. Glucose transporter 3 (GLUT3) protein expression in human placenta across gestation. Placenta. 2011;32:1041–9. doi:10.1016/j.placenta.2011.09.014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Desoye G, Gauster M, Wadsack C. Placental transport in pregnancy pathologies. Am J Clin Nutr. 2011;94:1896S–902. doi:10.3945/ajcn.110.000851.

    Article  CAS  PubMed  Google Scholar 

  49. Illsley NP. Glucose transporters in the human placenta. Placenta. 2000;21:14–22. doi:10.1053/plac.1999.0448.

    Article  CAS  PubMed  Google Scholar 

  50. Gaither K, Quraishi AN, Illsley NP. Diabetes alters the expression and activity of the human placental GLUT1 glucose transporter. J Clin Endocrinol Metab. 1999;84:695–701. doi:10.1210/jc.84.2.695.

    CAS  PubMed  Google Scholar 

  51. Illsley NP, Sellers MC, Wright RL. Glycaemic regulation of glucose transporter expression and activity in the human placenta. Placenta. 1998;19:517–24. doi:10.1016/S0143-4004(98)91045-1.

    Article  CAS  PubMed  Google Scholar 

  52. Hahn T, Barth S, Weiss U, Mosgoeller W, Desoye G. Sustained hyperglycemia in vitro down-regulates the GLUT1 glucose transport system of cultured human term placental trophoblast: a mechanism to protect fetal development? FASEB J. 1998;12:1221–31.

    CAS  PubMed  Google Scholar 

  53. Araújo JR, Pereira AC, Correia-Branco A, Keating E, Martel F. Oxidative stress induced by tert-butylhydroperoxide interferes with the placental transport of glucose: in vitro studies with BeWo cells. Eur J Pharmacol. 2013;720:218–26. doi:10.1016/j.ejphar.2013.10.023.

    Article  PubMed  Google Scholar 

  54. Lappas M, Andrikopoulos S, Permezel M. Hypoxanthine-xanthine oxidase down-regulates GLUT1 transcription via SIRT1 resulting in decreased glucose uptake in human placenta. J Endocrinol. 2012;213:49–57. doi:10.1530/JOE-11-0355.

    Article  CAS  PubMed  Google Scholar 

  55. Ericsson A, Hamark B, Jansson N, Johansson BR, Powell TL, Jansson T. Hormonal regulation of glucose and system A amino acid transport in first trimester placental villous fragments. Am J Physiol Regul Integr Comp Physiol. 2005;288:R656–62. doi:10.1152/ajpregu.00407.2004.

    Article  CAS  PubMed  Google Scholar 

  56. Araújo JR, Correia-Branco A, Pereira AC, Pinho MJ, Keating E, Martel F. Oxidative stress decreases uptake of neutral amino acids in a human placental cell line (BeWo cells). Reprod Toxicol. 2013;40C:76–81. doi:10.1016/j.reprotox.2013.06.073.

    Article  Google Scholar 

  57. Jansson T, Ekstrand Y, Bjorn C, Wennergren M, Powell TL. Alterations in the activity of placental amino acid transporters in pregnancies complicated by diabetes. Diabetes. 2002;51:2214–9. doi:10.2337/diabetes.51.7.2214.

    Article  CAS  PubMed  Google Scholar 

  58. Dicke JM, Henderson GI. Placental amino acid uptake in normal and complicated pregnancies. Am J Med Sci. 1988;295:223–7.

    Article  CAS  PubMed  Google Scholar 

  59. Araújo JR, Correia-Branco A, Ramalho C, Goncalves P, Pinho MJ, Keating E, et al. L-Methionine placental uptake: characterization and modulation in gestational diabetes mellitus. Reprod Sci. 2013;20:1492–507. doi:10.1177/1933719113488442.

    Article  PubMed Central  PubMed  Google Scholar 

  60. von Versen-Hoynck F, Rajakumar A, Parrott MS, Powers RW. Leptin affects system A amino acid transport activity in the human placenta: evidence for STAT3 dependent mechanisms. Placenta. 2009;30:361–7. doi:10.1016/j.placenta.2009.01.004.

    Article  Google Scholar 

  61. Nandakumaran M, Harouny AK, Al-Yatama M, Al-Azemi MK, Sugathan TN. Effect of increased glucose load on maternal-fetal transport of alpha-aminoisobutyric acid in the perfused human placenta: in vitro study. Acta Diabetol. 2002;39:75–81. doi:10.1007/s005920200017.

    Article  CAS  PubMed  Google Scholar 

  62. Jones HN, Jansson T, Powell TL. Full-length adiponectin attenuates insulin signaling and inhibits insulin-stimulated amino acid transport in human primary trophoblast cells. Diabetes. 2010;59:1161–70. doi:10.2337/db09-0824.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Jones HN, Jansson T, Powell TL. IL-6 stimulates system A amino acid transporter activity in trophoblast cells through STAT3 and increased expression of SNAT2. Am J Physiol Cell Physiol. 2009;297:C1228–35. doi:10.1152/ajpcell.00195.2009.

    Article  CAS  PubMed  Google Scholar 

  64. Nandakumaran M, Al-Shammari M, Al-Saleh E. Maternal-fetal transport kinetics of L-leucine in vitro in gestational diabetic pregnancies. Diabetes Metab. 2004;30:367–74.

    Article  CAS  PubMed  Google Scholar 

  65. Roos S, Powell TL, Jansson T. Human placental taurine transporter in uncomplicated and IUGR pregnancies: cellular localization, protein expression, and regulation. Am J Physiol Regul Integr Comp Physiol. 2004;287:R886–93. doi:10.1152/ajpregu.00232.2004.

    Article  CAS  PubMed  Google Scholar 

  66. Lee NY, Kang YS. Regulation of taurine transport at the blood-placental barrier by calcium ion, PKC activator and oxidative stress conditions. J Biomed Sci. 2010;17:S37. doi:10.1186/1423-0127-17-S1-S37.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Roos S, Lagerlof O, Wennergren M, Powell TL, Jansson T. Regulation of amino acid transporters by glucose and growth factors in cultured primary human trophoblast cells is mediated by mTOR signaling. Am J Physiol Cell Physiol. 2009;297:C723–31. doi:10.1152/ajpcell.00191.2009.

    Article  CAS  PubMed  Google Scholar 

  68. Keating E, Goncalves P, Campos I, Costa F, Martel F. Folic acid uptake by the human syncytiotrophoblast: interference by pharmacotherapy, drugs of abuse and pathological conditions. Reprod Toxicol. 2009;28:511–20. doi:10.1016/j.reprotox.2009.07.001.

    Article  CAS  PubMed  Google Scholar 

  69. Strid H, Bucht E, Jansson T, Wennergren M, Powell TL. ATP dependent Ca2+ transport across basal membrane of human syncytiotrophoblast in pregnancies complicated by intrauterine growth restriction or diabetes. Placenta. 2003;24:445–52.

    Article  CAS  PubMed  Google Scholar 

  70. Montalbetti N, Cantero MR, Dalghi MG, Cantiello HF. Reactive oxygen species inhibit polycystin-2 (TRPP2) cation channel activity in term human syncytiotrophoblast. Placenta. 2008;29:510–8. doi:10.1016/j.placenta.2008.02.015.

    Article  CAS  PubMed  Google Scholar 

  71. Burton G, Barker DJP, Moffett A, Thornburg KL. The placenta and human developmental programming. 1st ed. Cambridge: Cambridge University Press; 2011.

    Google Scholar 

  72. Jansson T, Ekstrand Y, Wennergren M, Powell TL. Placental glucose transport in gestational diabetes mellitus. Am J Obstet Gynecol. 2001;184:111–6. doi:10.1067/mob.2001.108075.

    Article  CAS  PubMed  Google Scholar 

  73. Bloxam DL, Bax CM, Bax BE. Culture of syncytiotrophoblast for the study of human placental transfer. Part I: isolation and purification of cytotrophoblast. Placenta. 1997;18:93–8. doi:10.1016/S0143-4004(97)90079-5.

    Article  CAS  PubMed  Google Scholar 

  74. Thongsong B, Subramanian RK, Ganapathy V, Prasad PD. Inhibition of amino acid transport system a by interleukin-1beta in trophoblasts. J Soc Gynecol Investig. 2005;12:495–503. doi:10.1016/j.jsgi.2005.06.008.

    Article  CAS  PubMed  Google Scholar 

  75. Bode CJ, Jin H, Rytting E, Silverstein PS, Young AM, Audus KL. In vitro models for studying trophoblast transcellular transport. Methods Mol Med. 2006;122:225–39. doi:10.1385/1-59259-989-3:225.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Kulkarni A, Dangat K, Kale A, Sable P, Chavan-Gautam P, Joshi S. Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats. PLoS One. 2011;6:e17706. doi:10.1371/journal.pone.0017706.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Innis SM. Essential fatty acid transfer and fetal development. Placenta. 2005;26:S70–5. doi:10.1016/j.placenta.2005.01.005.

    Article  PubMed  Google Scholar 

  78. Larque E, Demmelmair H, Gil-Sanchez A, Prieto-Sanchez MT, Blanco JE, Pagan A, et al. Placental transfer of fatty acids and fetal implications. Am J Clin Nutr. 2011;94:1908S–13. doi:10.3945/ajcn.110.001230.

    Article  CAS  PubMed  Google Scholar 

  79. Ryan AS, Astwood JD, Gautier S, Kuratko CN, Nelson EB, Salem Jr N. Effects of long-chain polyunsaturated fatty acid supplementation on neurodevelopment in childhood: a review of human studies. Prostaglandins Leukot Essent Fatty Acids. 2010;82:305–14. doi:10.1016/j.plefa.2010.02.007.

    Article  CAS  PubMed  Google Scholar 

  80. Greenberg JA, Bell SJ, Ausdal WV. Omega-3 fatty acid supplementation during pregnancy. Rev Obstet Gynecol. 2008;1:162–9.

    PubMed Central  PubMed  Google Scholar 

  81. Araújo JR, Correia-Branco A, Ramalho C, Keating E, Martel F. Gestational diabetes mellitus decreases placental uptake of long-chain polyunsaturated fatty acids: involvement of long-chain acyl-CoA synthetase. J Nutr Biochem. 2013;24:1741–50. doi:10.1016/j.jnutbio.2013.03.003.

    Article  PubMed  Google Scholar 

  82. Bonen A, Chabowski A, Luiken JJ, Glatz JF. Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: molecular, biochemical, and physiological evidence. Physiology (Bethesda). 2007;22:15–29.

    CAS  Google Scholar 

  83. Weedon-Fekjaer MS, Dalen KT, Solaas K, Staff AC, Duttaroy AK, Nebb HI. Activation of LXR increases acyl-CoA synthetase activity through direct regulation of ACSL3 in human placental trophoblast cells. J Lipid Res. 2010;51:1886–96. doi:10.1194/jlr.M004978.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Magnusson AL, Waterman IJ, Wennergren M, Jansson T, Powell TL. Triglyceride hydrolase activities and expression of fatty acid binding proteins in the human placenta in pregnancies complicated by intrauterine growth restriction and diabetes. J Clin Endocrinol Metab. 2004;89:4607–14. doi:10.1210/jc.2003-032234.

    Article  CAS  PubMed  Google Scholar 

  85. Radaelli T, Lepercq J, Varastehpour A, Basu S, Catalano PM, Hauguel-De Mouzon S. Differential regulation of genes for fetoplacental lipid pathways in pregnancy with gestational and type 1 diabetes mellitus. Am J Obstet Gynecol. 2009;201:209 e1–e10. doi:10.1016/j.ajog.2009.04.019.

    Google Scholar 

  86. Gauster M, Hiden U, van Poppel M, Frank S, Wadsack C, Hauguel-de Mouzon S, et al. Dysregulation of placental endothelial lipase in obese women with gestational diabetes mellitus. Diabetes. 2011;60:2457–64. doi:10.2337/db10-1434.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Pagan A, Prieto-Sanchez MT, Blanco-Carnero JE, Gil-Sanchez A, Parrilla JJ, Demmelmair H, et al. Materno-fetal transfer of docosahexaenoic acid is impaired by gestational diabetes mellitus. Am J Physiol Endocrinol Metab. 2013;305:E826–33. doi:10.1152/ajpendo.00291.2013.

    Article  CAS  PubMed  Google Scholar 

  88. Min Y, Lowy C, Ghebremeskel K, Thomas B, Bitsanis D, Crawford MA. Fetal erythrocyte membrane lipids modification: preliminary observation of an early sign of compromised insulin sensitivity in offspring of gestational diabetic women. Diabet Med. 2005;22:914–20. doi:10.1111/j.1464-5491.2005.01556.x.

    Article  CAS  PubMed  Google Scholar 

  89. Thomas BA, Ghebremeskel K, Lowy C, Offley-Shore B, Crawford MA. Plasma fatty acids of neonates born to mothers with and without gestational diabetes. Prostaglandins Leukot Essent Fatty Acids. 2005;72:335–41. doi:10.1016/j.plefa.2005.01.001.

    Article  CAS  PubMed  Google Scholar 

  90. Wijendran V, Bendel RB, Couch SC, Philipson EH, Cheruku S, Lammi-Keefe CJ. Fetal erythrocyte phospholipid polyunsaturated fatty acids are altered in pregnancy complicated with gestational diabetes mellitus. Lipids. 2000;35:927–31. doi:10.1007/S11745-000-0602-2.

    Article  CAS  PubMed  Google Scholar 

  91. Duttaroy AK, Jorgensen A. Insulin and leptin do not affect fatty acid uptake and metabolism in human placental choriocarcinoma (BeWo) cells. Prostaglandins Leukot Essent Fatty Acids. 2005;72:403–8. doi:10.1016/j.plefa.2005.03.004.

    Article  CAS  PubMed  Google Scholar 

  92. Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab. 2000;71:121–38. doi:10.1006/mgme.2000.3027.

    Article  CAS  PubMed  Google Scholar 

  93. Caballero B, Allen L, Prentice A. Encyclopedia of human nutrition. 2nd ed. Boston: Elsevier/Academic Press; 2005.

    Google Scholar 

  94. Zhao R, Diop-Bove N, Visentin M, Goldman ID. Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr. 2011;31:177–201. doi:10.1146/annurev-nutr-072610-145133.

    Article  CAS  PubMed  Google Scholar 

  95. Giugliani ER, Jorge SM, Goncalves AL. Serum and red blood cell folate levels in parturients, in the intervillous space of the placenta and in full-term newborns. J Perinat Med. 1985;13:55–9.

    Article  CAS  PubMed  Google Scholar 

  96. Hutson JR, Stade B, Lehotay DC, Collier CP, Kapur BM. Folic acid transport to the human fetus is decreased in pregnancies with chronic alcohol exposure. PLoS One. 2012;7:e38057. doi:10.1371/journal.pone.0038057.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Araújo JR, Correia-Branco A, Moreira L, Ramalho C, Martel F, Keating E. Folic acid uptake by the human syncytiotrophoblast is affected by gestational diabetes, hyperleptinemia, and TNF-alpha. Pediatr Res. 2013;73:388–94. doi:10.1038/pr.2013.14.

    Article  PubMed  Google Scholar 

  98. Torricelli M, Voltolini C, Bloise E, Biliotti G, Giovannelli A, De Bonis M, et al. Urocortin increases IL-4 and IL-10 secretion and reverses LPS-induced TNF-alpha release from human trophoblast primary cells. Am J Reprod Immunol. 2009;62:224–31. doi:10.1111/j.1600-0897.2009.00729.x.

    Article  CAS  PubMed  Google Scholar 

  99. Bardicef M, Bardicef O, Sorokin Y, Altura BM, Altura BT, Cotton DB, et al. Extracellular and intracellular magnesium depletion in pregnancy and gestational diabetes. Am J Obstet Gynecol. 1995;172:1009–13. doi:10.1016/0002-9378(95)90035-7.

    Article  CAS  PubMed  Google Scholar 

  100. Jansson T, Powell TL. Role of placental nutrient sensing in developmental programming. Clin Obstet Gynecol. 2013;56:591–601. doi:10.1097/GRF.0b013e3182993a2e. This article provides a simple description of how the fetoplacental unit responds to alterations in maternal nutrition and metabolism.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) and COMPETE, QREN, and FEDER (SFRH/BD/63086/2009).

Compliance with Ethics Guidelines

Conflict of Interest

João Ricardo Araújo, Elisa Keating, and Fátima Martel declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Ricardo Araújo.

Additional information

This article is part of the Topical Collection on Diabetes and Pregnancy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, J.R., Keating, E. & Martel, F. Impact of Gestational Diabetes Mellitus in the Maternal-to-Fetal Transport of Nutrients. Curr Diab Rep 15, 1 (2015). https://doi.org/10.1007/s11892-014-0569-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0569-y

Keywords

Navigation