Skip to main content
Log in

The biological principles of swarm intelligence

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

The roots of swarm intelligence are deeply embedded in the biological study of self-organized behaviors in social insects. From the routing of traffic in telecommunication networks to the design of control algorithms for groups of autonomous robots, the collective behaviors of these animals have inspired many of the foundational works in this emerging research field. For the first issue of this journal dedicated to swarm intelligence, we review the main biological principles that underlie the organization of insects’ colonies. We begin with some reminders about the decentralized nature of such systems and we describe the underlying mechanisms of complex collective behaviors of social insects, from the concept of stigmergy to the theory of self-organization in biological systems. We emphasize in particular the role of interactions and the importance of bifurcations that appear in the collective output of the colony when some of the system’s parameters change. We then propose to categorize the collective behaviors displayed by insect colonies according to four functions that emerge at the level of the colony and that organize its global behavior. Finally, we address the role of modulations of individual behaviors by disturbances (either environmental or internal to the colony) in the overall flexibility of insect colonies. We conclude that future studies about self-organized biological behaviors should investigate such modulations to better understand how insect colonies adapt to uncertain worlds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, C., & Franks, N. R. (2001). Teams in animal societies. Behavioral Ecology, 12(5), 534–540.

    Google Scholar 

  • Anderson, C., Franks, N. R., & McShea, D. W. (2001). The complexity and hierarchical structure of tasks in insect societies. Animal Behaviour, 62(4), 643–651.

    Google Scholar 

  • Ataya, H., & Lenoir, A. (1984). Le comportement nécrophorique chez la fourmi Lasius niger L. Insectes Sociaux, 31, 20–33.

    Google Scholar 

  • Beckers, R., Deneubourg, J. L., Goss, S., & Pasteels, J. M. (1990). Collective decision making through food recruitment. Insectes Sociaux, 37, 258–267.

    Google Scholar 

  • Beckers, R., Deneubourg, J. L., & Goss, S. (1992). Trail laying behaviour during food recruitment in the ant Lasius niger (L.). Insectes Sociaux, 39, 59–72.

    Google Scholar 

  • Beckers, R., Deneubourg, J. L., & Goss, S. (1993). Modulation of trail laying in the ant Lasius niger (Hymenoptera: Formicidae) and its role in the collective selection of a food source. Journal of Insect Behavior, 6, 751–759.

    Google Scholar 

  • Ben-Jacob, E., Schochet, O., Tenenbaum, A., Cohen, I., Cziròk, A., & Vicsek, T. (1994). Generic modelling of cooperative growth patterns in bacterial colonies. Nature, 368(6466), 46–49.

    Google Scholar 

  • Ben-Jacob, E., Cohen, I., & Levine, H. (2000). Cooperative self-organization of microorganisms. Advances in Physics, 49, 395–554.

    Google Scholar 

  • Beshers, S. N., & Fewell, J. H. (2001). Models of division of labor in social insects. Annual Review of Entomology, 46(1), 413–440.

    Google Scholar 

  • Bonabeau, E. (1996). Marginally stable swarms are flexible and efficient. Journal de Physique I, 6, 309–324.

    Google Scholar 

  • Bonabeau, E., & Theraulaz, G. (2000). Swarm smarts. Scientific American, 282(3), 72–79.

    Article  Google Scholar 

  • Bonabeau, E., Theraulaz, G., Deneubourg, J. L., Aron, S., & Camazine, S. (1997). Self-organization in social insects. Trends in Ecology and Evolution, 12(5), 188–193.

    Google Scholar 

  • Bonabeau, E., Theraulaz, G., & Deneubourg, J. L. (1998). Fixed response threshold and the regulation of division of labor in insect societies. Bulletin of Mathematical Biology, 60, 753–807.

    MATH  Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence—from natural to artificial systems. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Bruinsma, O. H. (1979). An analysis of building behaviour of the termite Macrotemes subhyalinus. Lanbouwhogeschool te Wageningen, The Netherlands.

  • Büchner, L. (1881). La vie psychique des bêtes. Paris: Reinwald.

    Google Scholar 

  • Buhl, J., Gautrais, J., Solé, R. V., Kuntz, P., Valverde, S., Deneubourg, J. L., & Theraulaz, G. (2004). Efficiency and robustness in ant networks of galleries. The European Physical Journal B—Condensed Matter and Complex Systems, 42(1), 123–129.

    Google Scholar 

  • Buhl, J., Deneubourg, J. L., Grimal, A., & Theraulaz, G. (2005). Self-organized digging activity in ant colonies. Behavioral Ecology and Sociobiology, 58(1), 9–17.

    Google Scholar 

  • Buhl, J., Sumpter, D. J. T., Couzin, I. D., Hale, J. J., Despland, E., Miller, E. R., & Simpson, S. J. (2006). From disorder to order in marching locusts. Science, 312(5778), 1402–1406.

    Google Scholar 

  • Burd, M. (2006). Ecological consequences of traffic organisation in ant societies. Physica A: Statistical and Theoretical Physics, 372(1), 124–131.

    Google Scholar 

  • Camazine, S., & Sneyd, J. (1991). A model of collective nectar source selection by honey bees: Self-organization through simple rules. Journal of Theoretical Biology, 149(4), 547–571.

    Google Scholar 

  • Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organization in biological systems. Princeton: Princeton University Press.

    Google Scholar 

  • Campos, M., Bonabeau, E., Theraulaz, G., & Deneubourg, J. L. (2000). Dynamic scheduling and division of labor in social insects. Adaptive Behavior, 8(2), 83–95.

    Google Scholar 

  • Chauvin, R. (1968). Sur le transport collectif des proies par Formica polyctena. Insectes Sociaux, 15, 193–200.

    Google Scholar 

  • Chauvin, R. (1971). Les lois de l’ergonomie chez les fourmis au cours du transport d’objets. Comptes Rendus de l’Académie des Sciences de Paris D, 273, 1862–1865.

    Google Scholar 

  • Couzin, I. D., & Franks, N. R. (2003). Self-organized lane formation and optimized traffic flow in army ants. Proceedings of the Royal Society B Biological Sciences, 270, 139–146.

    Google Scholar 

  • Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-making in animal groups on the move. Nature, 433(7025), 513–516.

    Google Scholar 

  • Crichton, M. (2002). Prey. New York: HarperCollins.

    Google Scholar 

  • Dambach, M., & Goehlen, B. (1999). Aggregation density and longevity correlate with humidity in first instar nymphs of the cockroach (Blattella germanica L., Dictyoptera). Journal of Insect Physiology, 45, 423–429.

    Google Scholar 

  • Deneubourg, J. L., & Goss, S. (1989). Collective patterns and decision making. Ethology Ecology and Evolution, 1, 295–311.

    Google Scholar 

  • Deneubourg, J. L., Pasteels, J. M., & Verhaege, J. C. (1983). Probabilistic behaviour in ants: a strategy of errors? Journal of Theoretical Biology, 105, 259–271.

    Google Scholar 

  • Deneubourg, J. L., Aron, S., Goss, S. A. P. J. M., & Duerinck, G. (1986). Random behaviour, amplification processes and number of participants: how they contribute to the foraging properties of ants. Physica D, 22, 176–186.

    MathSciNet  Google Scholar 

  • Deneubourg, J. L., Goss, S., Pasteels, J. M., Fresneau, D., & Lachaud, J. P. (1987). Self-organization mechanisms in ant societies (II): learning in foraging and division of labor. In Proceedings of the from individual to collective behavior in social insects conference (pp. 177–196). Basel: Birkhäuser.

    Google Scholar 

  • Deneubourg, J. L., Goss, S., Franks, N. R., Sendova-Franks, A. B., Detrain, C., & Chretien, L. (1991). The dynamics of collective sorting robot-like ants and ant-like robots. In Proceedings of the first conference on simulation of adaptive behavior: from animal to animats (pp. 356–365). Cambridge: MIT Press.

    Google Scholar 

  • Deneubourg, J. L., Lioni, A., & Detrain, C. (2002). Dynamics of aggregation and emergence of cooperation. Biological Bulletin, 202(3), 262–267.

    Google Scholar 

  • Desneux, J. (1956). Structures “atypiques” dans les nidifications souterraines d’Apicotermes Lamani Sj. (Isoptera, Termitidae) mises en évidence par la radiographie. Insectes Sociaux, V3(2), 277–281.

    Google Scholar 

  • Detrain, C., & Deneubourg, J. L. (1997). Scavenging by Pheidole pallidula: a key for understanding decision-making systems in ants. Animal Behaviour, 53(3), 537–547.

    Google Scholar 

  • Detrain, C., & Deneubourg, J. L. (2006). Self-organized structures in a superorganism: do ants “behave” like molecules? Physics of Life Reviews, 3(3), 162–187.

    Google Scholar 

  • Detrain, C., Natan, C., & Deneubourg, J. L. (2001). The influence of the physical environment on the self-organised foraging patterns of ants. Naturwissenschaften, 88(4), 171–174.

    Google Scholar 

  • Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B, 26(1), 29–41.

    Google Scholar 

  • Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant algorithms for discrete optimization. Artificial Life, 5(2), 137–172.

    Google Scholar 

  • Dornhaus, A., Franks, N. R., Hawkins, R. M., & Shere, H. N. S. (2004). Ants move to improve: colonies of Leptothorax albipennis emigrate whenever they find a superior nest site. Animal Behaviour, 67(5), 959–963.

    Google Scholar 

  • Downing, H. A., & Jeanne, R. L. (1988). Nest construction by the paperwasp Polistes: a test of stigmergy theory. Animal Behaviour, 36, 1729–1739.

    Google Scholar 

  • Downing, H. A., & Jeanne, R. L. (1990). The regulation of complex building behavior in the paperwasp Polistes fuscatus. Animal Behaviour, 39, 105–124.

    Google Scholar 

  • Dussutour, A., Fourcassié, V., Helbing, D., & Deneubourg, J. L. (2004). Optimal traffic organization in ants under crowded conditions. Nature, 428(6978), 70–73.

    Google Scholar 

  • Dussutour, A., Deneubourg, J. L., & Fourcassié, V. (2005). Amplification of individual preferences in a social context: the case of wall-following in ants. Proceedings of the Royal Society B Biological Sciences, 272, 705–714.

    Google Scholar 

  • Forel, A. (1921). Le monde social des fourmis du globe comparé à celui de l’homme. Genève: Librairie Kundig.

    Google Scholar 

  • Franks, N. R. (1986). Teams in social insects: group retrieval of prey by army ants (Eciton burchelli, Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 18, 425–429.

    Google Scholar 

  • Franks, N. R. (1989). Army ants: a collective intelligence. American Scientist, 77, 139–145.

    Google Scholar 

  • Franks, N. R., & Fletcher, C. R. (1983). Spatial patterns in army ant foraging and migration: Eciton burchelli on Barro Colorado Island, Panama. Behavioral Ecology and Sociobiology, V12(4), 261–270.

    Google Scholar 

  • Franks, N. R., Wilby, A., Silverman, B. W., & Tofts, C. (1992). Self-organizing nest construction in ants: sophisticated building by blind bulldozing. Animal Behaviour, 44(2), 357–375.

    Google Scholar 

  • Franks, N. R., Dornhaus, A., Fitzsimmons, J. P., & Stevens, M. (2003). Speed versus accuracy in collective decision making. Proceedings of the Royal Society B Biological Sciences, 270(1532), 2457–2463.

    Google Scholar 

  • Gadagkar, R., & Joshi, N. V. (1983). Quantitative ethology of social wasps: time-activity budgets and caste differentiation in Ropalidia marginata (Lep.) (Hymenoptera: Vespidae). Animal Behaviour, 31, 26–31.

    Google Scholar 

  • Gadagkar, R., & Joshi, N. V. (1984). Social organization in the Indian wasp Ropalidia cyathiformis (Fab.) (Hymenoptera: Vespidae). Zeitschrift fur Tierpsychologie, 64, 15–32.

    Google Scholar 

  • Garnier, S., Jost, C., Jeanson, R., Gautrais, J., Asadpour, M., Caprari, G., & Theraulaz, G. (2005). Aggregation behaviour as a source of collective decision in a group of cockroach-like robots. In Proceedings of the 8th European conference on artificial life (pp. 169–178), 5–7 September 2005. Berlin: Springer.

    Google Scholar 

  • Gautrais, J., Theraulaz, G., Deneubourg, J. L., & Anderson, C. (2002). Emergent polyethism as a consequence of increased colony size in insect societies. Journal of Theoretical Biology, 215(3), 363–373.

    Google Scholar 

  • Gautrais, J., Jost, C., Jeanson, R., & Theraulaz, G. (2004). How individual interactions control aggregation patterns in gregarious arthropods. Interaction Studies, 5(2), 245–269.

    Google Scholar 

  • Gautrais, J., Michelena, P., Sibbald, A., Bon, R., & Deneubourg, J.-L. (2007, in press). Allelomimetic synchronisation in Merino sheep. Animal Behaviour.

  • Gordon, D. M. (1989). Dynamics of task switching in harvester ants. Animal Behaviour, 38, 194–204.

    Google Scholar 

  • Gordon, D. M. (1996). The organization of work in social insect colonies. Nature, 380(6570), 121–124.

    Google Scholar 

  • Goss, S., Aron, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Self-organized shortcuts in the Argentine ant. Naturwissenschaften, 76, 579–581.

    Google Scholar 

  • Grassé, P. P. (1959). La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes Natalensis et Cubitermes sp. La théorie de la stigmergie : essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6, 41–81.

    Google Scholar 

  • Grassé, P. P. (1984). Termitologia, Tome II. Fondation des Sociétés. Construction. Paris: Masson.

    Google Scholar 

  • Grünbaum, D., Viscido, S. V., & Parrish, J. K. (2005). Extracting interactive control algorithms from group dynamics of schooling fish. In Proceedings of the cooperative control conference (pp. 103–117). Heidelberg: Springer.

    Google Scholar 

  • Haskins, C. P., & Haskins, E. F. (1974). Notes on necrophoric behaviour in the archaïc ant Myrmecia vindex (Formicidae: Myrmeciinae). Psyche, 81, 258–267.

    Article  Google Scholar 

  • Helbing, D., Molnàr, P., Farkas, I. J., & Bolay, K. (2001). Self-organizing pedestrian movement. Environment and Planning B: Planning and Design, 28(3), 361–383.

    Google Scholar 

  • Hölldobler, B., & Wilson, E. O. (1990). The ants. Cambridge: Harvard University Press.

    Google Scholar 

  • Howard, D. F., & Tschinkel, W. R. (1976). Aspects of necrophoric behaviour in the red imported fire ant, Solenopsis invicta. Behaviour, 56, 157–180.

    Google Scholar 

  • Jeanson, R., Ratnieks, F. L. W., & Deneubourg, J. L. (2003). Pheromone trail decay rates on different substrates in the Pharaoh’s ant, Monomorium pharaonis. Physiological Entomology, 28(3), 192–198.

    Google Scholar 

  • Jeanson, R., Deneubourg, J. L., Grimal, A., & Theraulaz, G. (2004). Modulation of individual behavior and collective decision-making during aggregation site selection by the ant Messor barbarus. Behavioral Ecology and Sociobiology, 55, 388–394.

    Google Scholar 

  • Janson, S., Middendorf, M., & Beekman, M. (2005). Honeybee swarms: how do scouts guide a swarm of uninformed bees? Animal Behaviour, 70(2), 349–358.

    Google Scholar 

  • Jha, S., Casey-Ford, R. G., Pedersen, J. S., Platt, T. G., Cervo, R., Queller, D. C., & Strassmann, J. E. (2006). The queen is not a pacemaker in the small-colony wasps Polistes instabilis and P. dominulus. Animal Behaviour, 71, 1197–1203.

    Google Scholar 

  • Jost, C., Verret, J., Casellas, E., Gautrais, J., Challet, M., Lluc, J., Blanco, S., Clifton, M. J., & Theraulaz, G. (2007). The interplay between a self-organized process and an environmental template: corpse clustering under the influence of air currents in ants. Journal of the Royal Society Interface, 4, 107–116.

    Google Scholar 

  • Karsai, I., & Theraulaz, G. (1995). Nest building in a social wasp: postures and constraints. Sociobiology, 26, 83–114.

    Google Scholar 

  • Karsai, I., & Wenzel, J. W. (1998). Productivity, individual-level and colony-level flexibility, and organization of work as consequences of colony size. Proceeding of the National Academy of Sciences, 95(15), 8665–8669.

    Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks (pp. 1942–1948). Washington: Bureau of Labor Statistics.

    Google Scholar 

  • Krieger, M. J. B., Billeter, J. B., & Keller, L. (2000). Ant-like task allocation and recruitment in cooperative robots. Nature, 406(6799), 992–995.

    Google Scholar 

  • Kuntz, P., Snyers, D., & Layzell, P. (1999). A stochastic heuristic for visualising graph clusters in a bi-dimensional space prior to partitioning. Journal of Heuristics, 5(3), 327–351.

    MATH  Google Scholar 

  • Ledoux, A. (1950). Recherche sur la biologie de la fourmis fileuse (Oecophylla longinoda Latr.). Annales des Sciences Naturelles et Zoologiques, 11, 313–409.

    Google Scholar 

  • Lioni, A., Sauwens, C., Theraulaz, G., & Deneubourg, J. L. (2001). Chain formation in Oecophylla longinoda. Journal of Insect Behavior, 14, 679–696.

    Google Scholar 

  • Maeterlinck, M. (1927). The life of the white ant. London: Allen & Unwin.

    Google Scholar 

  • Melhuish, C., Wilson, M., & Sendova-Franks, A. (2001). Patch sorting: multi-object clustering using minimalist robots. In Proceedings of the 6th European conference on advances in artificial life (pp. 543–552). London: Springer.

    Google Scholar 

  • Menzel, R., & Giurfa, M. (2001). Cognitive architecture of a mini-brain: the honeybee. Trends in Cognitive Sciences, 5, 62–71.

    Google Scholar 

  • Moffett, M. W. (1988). Cooperative food transport by an Asiatic ant. National Geographic Research, 4, 386–394.

    Google Scholar 

  • Pankiw, T., Waddington, K. D., & Page, R. E. (2001). Modulation of sucrose response thresholds in honey bees (Apis mellifera L.): influence of genotype, feeding, and foraging experience. Journal of Comparative Physiology A, 187(4), 293–301.

    Google Scholar 

  • Parrish, J. K., Viscido, S. V., & Grünbaum, D. (2002). Self-organized fish schools: an examination of emergent properties. Biological Bulletin, 202(3), 296–305.

    Google Scholar 

  • Portha, S., Deneubourg, J. L., & Detrain, C. (2002). Self-organized asymmetries in ant foraging: a functional response to food type and colony needs. Behavioral Ecology, 13(6), 776–781.

    Google Scholar 

  • Portha, S., Deneubourg, J. L., & Detrain, C. (2004). How food type and brood influence foraging decisions of Lasius niger scouts. Animal Behaviour, 68(1), 115–122.

    Google Scholar 

  • Pratt, S. C., Mallon, E. B., Sumpter, D. J. T., & Franks, N. R. (2002). Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behavioral Ecology and Sociobiology, 52(2), 117–127.

    Google Scholar 

  • Reeve, H. K., & Gamboa, G. J. (1983). Colony activity integration in primitively eusocial wasps: the role of the queen (Polistes fuscatus, Hymenoptera: Vespidae). Behavioral Ecology and Sociobiology, 13, 63–74.

    Google Scholar 

  • Reeve, H. K., & Gamboa, G. J. (1987). Queen regulation of worker foraging in paper wasp: a social feedback control system (Polistes fuscatus, Hymenoptera: Vespidae). Behaviour, 106, 147–167.

    Google Scholar 

  • Reynolds, C. W. (1987). Flocks, herds and school: a distributed behavioral model. Computer Graphic, 21(4), 25–34.

    MathSciNet  Google Scholar 

  • Robinson, G. E. (1992). Regulation of division of labor in insect societies. Annual Review of Entomology, 37(1), 637–665.

    Google Scholar 

  • Seeley, T. D. (2002). When is self-organization used in biological systems? Biological Bulletin, 202(3), 314–318.

    Google Scholar 

  • Seeley, T. D., Camazine, S., & Sneyd, J. (1991). Collective decision-making in honey bees: how colonies choose among nectar sources. Behavioural Ecology and Sociobiology, 28, 277–290.

    Google Scholar 

  • Seeley, T. D., & Tautz, J. (2001). Worker piping in honey bee swarms and its role in preparing for liftoff. Journal of Comparative Physiology A, 187, 667–676.

    Google Scholar 

  • Seeley, T. D., & Visscher, P. K. (2004). Group decision making in nest-site selection by honey bees. Apidologie, 35, 101–116.

    Google Scholar 

  • Sudd, J. H. (1965). The transport of prey by ants. Behaviour, 25, 234–271.

    Google Scholar 

  • Sumpter, D. J. T., & Beekman, M. (2003). From nonlinearity to optimality: pheromone trail foraging by ants. Animal Behaviour, 66(2), 273–280.

    Google Scholar 

  • Theraulaz, G., & Bonabeau, E. (1995a). Coordination in distributed building. Science, 269(5224), 686–688.

    Google Scholar 

  • Theraulaz, G., & Bonabeau, E. (1995b). Modeling the collective building of complex architectures in social insects with lattice swarms. Journal of Theoretical Biology, 177, 381–400.

    Google Scholar 

  • Theraulaz, G., & Bonabeau, E. (1999). A brief history of stigmergy. Artificial Life, 5, 97–116.

    Google Scholar 

  • Theraulaz, G., Gervet, J., & Semenoff, S. (1991). Social regulation of foraging activities in Polistes dominulus Christ: a systemic approach to behavioural organization. Behaviour, 116, 292–320.

    Google Scholar 

  • Theraulaz, G., Gervet, J., Thon, B., Pratte, M., & Semenoff, S. (1992). The dynamics of colony organization in the primitively eusocial wasp Polistes dominulus (Christ). Ethology, 91, 177–202.

    Article  Google Scholar 

  • Theraulaz, G., Bonabeau, E., & Deneubourg, J. L. (1998a). The origin of nest complexity in social insects. Complexity, 3(6), 15–25.

    Google Scholar 

  • Theraulaz, G., Bonabeau, E., & Deneubourg, J. L. (1998b). Response thresholds reinforcement and division of labor in insect societies. Proceedings of the Royal Society of London Series B-Biological Sciences, 265, 327–332.

    Google Scholar 

  • Theraulaz, G., Bonabeau, E., Nicolis, S. C., Sole, R. V., Fourcassié, V., Blanco, S., Fournier, R., Joly, J. L., Fernandez, P., Grimal, A., Dalle, P., & Deneubourg, J. L. (2002). Spatial patterns in ant colonies. Proceeding of the National Academy of Sciences, 99(15), 9645–9649.

    MATH  Google Scholar 

  • Theraulaz, G., Gautrais, J., Camazine, S., & Deneubourg, J. L. (2003). The formation of spatial patterns in social insects: from simple behaviours to complex structures. Philosophical Transaction of the Royal Society A, 361(1807), 1263–1282.

    Article  MathSciNet  Google Scholar 

  • Thorpe, W. H. (1963). Learning and instinct in animals. London: Methuen.

    Google Scholar 

  • Traniello, J. F. A., & Robson, S. K. (1995). In W. J. Bell & R. Cardé (Eds.), The chemical ecology of insects (Vol. II, pp. 241–285). London: Chapman and Hall.

    Google Scholar 

  • Tschinkel, W. R. (2003). Subterranean ant nests: trace fossils past and future? Palaeogeography, Palaeoclimatology, Palaeoecology, 192(1–4), 321–333.

    Google Scholar 

  • Tschinkel, W. R. (2004). The nest architecture of the Florida harvester ant, Pogonomyrmex badius. Journal of Insect Science, 4, 21.

    Google Scholar 

  • Vittori, K., Talbot, G., Gautrais, J., Fourcassié, V., Araujo, A. F. R., & Theraulaz, G. (2006). Path efficiency of ant foraging trails in an artificial network. Journal of Theoretical Biology, 239, 507–515.

    MathSciNet  Google Scholar 

  • Weidenmüller, A. (2004). The control of nest climate in bumblebee (Bombus terrestris) colonies: interindividual variability and self reinforcement in fanning response. Behavioral Ecology, 15(1), 120–128.

    Google Scholar 

  • Wenzel, J. W. (1991). Evolution of nest architecture. In K. G. Ross & R. W. Matthews (Eds.), The social biology of wasps (pp. 480–519). Cornell University Press.

  • Wenzel, J. W. (1996). In S. Turillazzi & M. J. West-Eberhard (Eds.), Natural history of paper-wasps (pp. 58–74). Oxford: University Press.

    Google Scholar 

  • Wilson, E. O. (1962). Chemical communication among workers of the fire ants Solenopsis saevisima (Fr. Smith): I. The organization of mass foraging. Animal Behaviour, 10, 134–147.

    Google Scholar 

  • Wilson, E. O. (1971). The insect societies. Cambridge: Harvard University Press.

    Google Scholar 

  • Wilson, M., Melhuish, C., Sendova-Franks, A. B., & Scholes, S. (2004). Algorithms for building annular structures with minimalist robots inspired by brood sorting in ant colonies. Autonomous Robots, 17(2), 115–136.

    Google Scholar 

  • Wojtusiak, J., Godzinska, E. J., & Dejean, A. (1994). Capture and retrieval of very large prey by workers of the African weaver ant Oecophylla longinoda (Latreille). In A. Lenoir, G. Arnold & M. Lepage (Eds.), Les insectes sociaux. 12th congress of the international union for the study of social insects (p. 548), Paris, Sorbonne, 21–27 August 1994. Paris: Université Paris Nord.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Garnier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garnier, S., Gautrais, J. & Theraulaz, G. The biological principles of swarm intelligence. Swarm Intell 1, 3–31 (2007). https://doi.org/10.1007/s11721-007-0004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-007-0004-y

Keywords

Navigation