Skip to main content

Advertisement

Log in

Incretins as a novel therapeutic strategy in patients with diabetes and heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure (HF) and diabetes mellitus (DM) commonly co-exist, with a prevalence of DM of up to 40 % in HF patients. Treatment of DM in patients with HF is challenging since many of the contemporary therapies used for the treatment of DM are either contraindicated in HF or are limited in their use due to the high prevalence of co-morbidities such as significant renal dysfunction. This article presents an overview of the physiology of the incretin system and how it can be targeted therapeutically, highlighting implications for the management of patients with DM and HF. Receptors for the incretin glucagon-like peptide-1 (GLP-1) are expressed throughout the cardiovascular system and the myocardium and are up-regulated in HF. GLP-1 therapy improves cardiac function in animal models of HF through augmented glucose uptake in the myocardium mediated through a p38 MAP kinase pathway. Small clinical studies have shown that GLP-1 improves ejection fraction, reduces BNP levels and enhances functional capacity in patients with chronic HF. A number of randomized controlled trials are currently underway to define the utility of targeting the incretin system in HF patients with DM. Incretin-based therapy may represent a novel therapeutic strategy in the treatment of HF patients with diabetes, in particular for their cardioprotective effects independent of those attributable to tight glycemic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Sicree BR, Shaw J, Zimmet P (2010) The global burden diabetes and impaired glucose tolerance. Diabetes 27:1–105

    Google Scholar 

  2. Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV et al (1999) Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100(10):1134–1146

    Article  PubMed  CAS  Google Scholar 

  3. Nieminen MS, Brutsaert D, Dickstein K, Drexler H, Follath F, Harjola V-P et al (2006) EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population. Eur Heart J 27(22):2725–2736

    Article  PubMed  Google Scholar 

  4. Jr. KFA, Fonarow GC, Emerman CL, LeJemtel TH, Costanzo MR, Abraham WT et al (2005) Characteristics and outcomes of patients hospitalized for heart failure in the United States: Rationale, design, and preliminary observations from the first 100,000, cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J 149(2):209–216

    Google Scholar 

  5. MacDonald MR, Petrie MC, Hawkins NM, Petrie JR, Fisher M, McKelvie R et al (2008) Diabetes, left ventricular systolic dysfunction, and chronic heart failure. Eur Heart J 29(10):1224–1240

    Article  PubMed  CAS  Google Scholar 

  6. Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321

    Article  PubMed  Google Scholar 

  7. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34(1):29–34

    Article  PubMed  CAS  Google Scholar 

  8. Amato L, Paolisso G, Cacciatore F, Ferrara N, Ferrara P, Canonico S et al (1997) Congestive heart failure predicts the development of non-insulin-dependent diabetes mellitus in the elderly. The Osservatorio Geriatrico Regione Campania Group. Diabetes Metab 23(3):213–218

    Google Scholar 

  9. Bauters C, Lamblin N, Mc Fadden EP, Van Belle E, Millaire A, De Groote P (2003) Influence of diabetes mellitus on heart failure risk and outcome. Cardiovasc Diabetol 2(1):1

    Article  PubMed  Google Scholar 

  10. Mamas MA, Deaton C, Rutter MK, Yuille M, Williams SG, Ray SG et al (2010) Impaired glucose tolerance and insulin resistance in heart failure: underrecognized and undertreated? J Cardiac Fail 16(9):761–768

    Article  CAS  Google Scholar 

  11. Deaton C, Mamas Ma, Rutter MK, Gibson M, Bowell S, Byrne R (2011) Glucose and insulin abnormalities in patients with heart failure. Eur J Cardiovasc Nurs 10(2):75–87

    Article  PubMed  Google Scholar 

  12. Fisman EZ, Tenenbaum A (2009) A cardiologic approach to non-insulin antidiabetic pharmacotherapy in patients with heart disease. Cardiovasc Diabetol 8:38

    Article  PubMed  Google Scholar 

  13. Eurich DT, McAlister FA, Blackburn DF, Majumdar SR, Tsuyuki RT, Varney J et al (2007) Benefits and harms of antidiabetic agents in patients with diabetes and heart failure: systematic review. BMJ Br Med J 335(7618):497

    Article  CAS  Google Scholar 

  14. Yale J-F (2005) Oral antihyperglycemic agents and renal disease: new agents, new concepts. J Am Soc Nephrol 16(Suppl 1):S7–S10

    Article  PubMed  CAS  Google Scholar 

  15. Shaw JS, Wilmot RL, Kilpatrick ES (2007) Establishing pragmatic estimated GFR thresholds to guide metformin prescribing. Diabet Med 24(10):1160–1163

    Article  PubMed  CAS  Google Scholar 

  16. Lago R, Singh P, Nesto R (2007) Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet 370(9593):1129–1136

    Google Scholar 

  17. Komajda M, McMurray JJV, Beck-Nielsen H, Gomis R, Hanefeld M, Pocock SJ et al (2010) Heart failure events with rosiglitazone in type 2 diabetes: data from the RECORD clinical trial. Eur Heart J 31(7):824–831

    Article  PubMed  CAS  Google Scholar 

  18. Robertson C Incretin-related therapies in Type 2 diabetes: a practical overview. Diabetes Spectr

  19. Elrick H, Stimmler L, Hlad CJ, Arai Y (1964) Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab 24(10):1076–1082

    Article  PubMed  CAS  Google Scholar 

  20. Perley MJ, Kipnis DM (1967) Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Investig 46(12):1954–1962

    Article  PubMed  CAS  Google Scholar 

  21. Girard J (2008) The incretins: from the concept to their use in the treatment of type 2 diabetes. Part A: incretins: concept and physiological functions. Diabetes metab 34(6 Pt 1):550–559

    Google Scholar 

  22. Brown JC, Dryburgh JR (1971) A gastric inhibitory polypeptide. II. The complete amino acid sequence. Can J Biochem 49(8):867–872

    Article  PubMed  CAS  Google Scholar 

  23. Schmidt WE, Siegel EG, Creutzfeldt W (1985) Glucagon-like peptide-1 but not glucagon-like peptide-2 stimulates insulin release from isolated rat pancreatic islets. Diabetologia 28(9):704–707

    Article  PubMed  CAS  Google Scholar 

  24. Drucker DJ, Nauck Ma (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368(9548):1696–1705

    Article  PubMed  CAS  Google Scholar 

  25. Lovshin Ja, Drucker DJ (2009) Incretin-based therapies for type 2 diabetes mellitus. Nature reviews. Endocrinol 5(5):262–269

  26. Plamboeck A, Holst JJ, Carr RD, Deacon CF (2005) Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both mediators of the degradation of glucagon-like peptide 1 in the anaesthetised pig. Diabetologia 48(9):1882–1890

    Article  PubMed  CAS  Google Scholar 

  27. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz S–S, Drucker DJ, Husain M (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117(18):2340–2350

    Article  PubMed  CAS  Google Scholar 

  28. Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132(6):2131–2157

    Article  PubMed  CAS  Google Scholar 

  29. Bhashyam S, Fields AV, Patterson B, Testani JM, Chen L, Shen Y-T et al (2010) Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy. Circ Heart Fail 3(4):512–521

    Article  PubMed  Google Scholar 

  30. Toft-Nielsen MB, Damholt MB, Madsbad S, Hilsted LM, Hughes TE, Michelsen BK et al (2001) Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 86(8):3717–3723

    Article  PubMed  CAS  Google Scholar 

  31. Meier JJ, Nauck Ma (2010) Is the diminished incretin effect in type 2 diabetes just an epi-phenomenon of impaired beta-cell function? Diabetes 59(5):1117–1125

    Article  PubMed  CAS  Google Scholar 

  32. Holst JJ Incretin Mimetics in the Treatment of Type 2 Diabetes Mellitus. Endocrine

  33. Buse JB, Drucker DJ, Taylor KL, Kim T, Walsh B, Hu H et al (2010) DURATION-1: Exenatide once weekly produces sustained glycemic control and weight loss over 52 weeks. Diabetes Care 33(6):1255–1261

    Article  PubMed  CAS  Google Scholar 

  34. Ratner RE, Maggs D, Nielsen LL, Stonehouse AH, Poon T, Zhang B et al (2006) Long-term effects of exenatide therapy over 82 weeks on glycaemic control and weight in over-weight metformin-treated patients with type 2 diabetes mellitus. Diabetes obes Metab 8(4):419–428

    Article  PubMed  CAS  Google Scholar 

  35. Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD, Fineman MS et al (2005) Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Am Diabetes Assoc

  36. Kendall DM, Cuddihy RM, Bergenstal RM (2009) Clinical application of incretin-based therapy: therapeutic potential, patient selection and clinical use. Am J Med 122(6):S37–S50

    Article  PubMed  Google Scholar 

  37. Klonoff DC, Buse JB, Nielsen LL, Guan X, Bowlus CL, Holcombe JH et al (2008) Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Informa UK Ltd, UK

  38. Ezekowitz J, McAlister FA, Humphries KH, Norris CM, Tonelli M, Ghali WA et al (2004) The association among renal insufficiency, pharmacotherapy, and outcomes in 6,427 patients with heart failure and coronary artery disease. J Am Coll Cardiol 44(8):1587–1592

    Article  PubMed  Google Scholar 

  39. Kim W, Egan JM (2008) The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 60(4):470–512

    Article  PubMed  CAS  Google Scholar 

  40. NICE clinical guideline 87—The management of type 2 diabetes. 2009

  41. Guideline Network SI. Management of diabetes: a national clinical guideline. SIGN; 2010

  42. Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R et al (2009) Medical management of hyperglycemia in Type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. Diabetes Care 32(1):193–203

    Article  PubMed  CAS  Google Scholar 

  43. Van Gaal LF, Gutkin SW, Nauck Ma (2008) Exploiting the antidiabetic properties of incretins to treat type 2 diabetes mellitus: glucagon-like peptide 1 receptor agonists or insulin for patients with inadequate glycemic control? Eur J Endocrinol/Eur Fed Endocr Soc 158(6):773–784

    Article  Google Scholar 

  44. Ahluwalia R, Vora J (2011) Emerging role of insulin with incretin therapies for management of type 2 diabetes. J manag care pharm 2(3):146–161

    Google Scholar 

  45. Tahrani AA, Bailey CJ, Del Prato S, Barnett AH (2011) Management of type 2 diabetes: new and future developments in treatment. Lancet 378(9786):182–197

    Google Scholar 

  46. Beadle RM, Frenneaux M (2010) Modification of myocardial substrate utilisation: a new therapeutic paradigm in cardiovascular disease. Heart Brit Cardiac Soc 96(11):824–830

    Article  CAS  Google Scholar 

  47. Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L et al (2004) Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 110(8):955–961

    Article  PubMed  CAS  Google Scholar 

  48. Zhao T, Parikh P, Bhashyam S, Bolukoglu H, Poornima I, Shen Y-T et al (2006) Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther 317(3):1106–1113

    Article  PubMed  CAS  Google Scholar 

  49. Poornima I, Brown SB, Bhashyam S, Parikh P, Bolukoglu H, Shannon RP (2008) Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circ Heart Fail 1(3):153–160

    Article  PubMed  CAS  Google Scholar 

  50. Vyas AK, Yang K-C, Woo D, Tzekov A, Kovacs A, Jay PY et al (2011) Exenatide improves glucose homeostasis and prolongs survival in a murine model of dilated cardiomyopathy. PLoS ONE 6(2):8

    Article  Google Scholar 

  51. Liu Q, Anderson C, Broyde A, Polizzi C, Fernandez R, Baron A et al (2010) VASCULAR Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure. Cardiovasc Diabetol 1–14

  52. Thrainsdottir I, Malmberg K, Olsson A, Gutniak M, Rydén L (2004) Initial experience with GLP-1 treatment on metabolic control and myocardial function in patients with type 2 diabetes mellitus and heart failure. Diabetes vasc Dis Res 1(1):40–43

    Article  Google Scholar 

  53. Sokos GG, Nikolaidis La, Mankad S, Elahi D, Shannon RP (2006) Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Cardiac Fail 12(9):694–699

    Article  CAS  Google Scholar 

  54. Read PA, Hoole SP, White PA, Khan FZ, O’Sullivan M, West NEJ et al (2011) A pilot study to assess whether glucagon-like peptide-1 protects the heart from ischemic dysfunction and attenuates stunning after coronary balloon occlusion in humans. Circ Cardiovasc interv 4(3):266–272

    Article  PubMed  CAS  Google Scholar 

  55. Read PA, Khan FZ, Dutka DP (2011) Cardioprotection against ischaemia induced by dobutamine stress using glucagon-like peptide-1 in patients with coronary artery disease. Heart (British Cardiac Society). May 10

  56. Halbirk M, Nørrelund H, Møller N, Holst JJ, Schmitz O, Nielsen R et al (2010) Cardiovascular and metabolic effects of 48-h glucagon-like peptide-1 infusion in compensated chronic patients with heart failure. Am J Physiol Heart Circ Physiol 298(3):H1096–H1102

    Article  PubMed  CAS  Google Scholar 

  57. Nathanson D, Ullman B, Löfström U, Hedman A, Frick M, Sjöholm A et al (2012) Effects of intravenous exenatide in type 2 diabetic patients with congestive heart failure: a double-blind, randomised controlled clinical trial of efficacy and safety. Diabetologia. 13:1–10

    Google Scholar 

  58. Swedberg K, Komajda M, Böhm M, Borer JS, Ford I, Dubost-Brama A et al (2010) Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376(9744):875–885

    Article  PubMed  CAS  Google Scholar 

  59. Ratner R, Han J, Nicewarner D, Yushmanova I, Hoogwerf BJ, Shen L (2011) Cardiovascular safety of exenatide BID: an integrated analysis from controlled clinical trials in participants with type 2 diabetes. Cardiovasc Diabetol 10(1):22

    Article  PubMed  CAS  Google Scholar 

  60. Best JH, Hoogwerf BJ, Herman WH, Pelletier EM, Smith DB, Wenten M et al (2011) Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the LifeLink database. Diabetes Care 34(1):90–95

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mamas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.A., Deaton, C., Rutter, M.K. et al. Incretins as a novel therapeutic strategy in patients with diabetes and heart failure. Heart Fail Rev 18, 141–148 (2013). https://doi.org/10.1007/s10741-012-9318-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-012-9318-y

Keywords

Navigation