Skip to main content
Log in

Inflammation-Related Erythrocyte Aggregation in Patients with Inflammatory Bowel Disease

  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Chronic inflammation is associated with increased erythrocyte adhesiveness/aggregation. This might have deleterious effects on the microcirculatory flow and tissue oxygenation. We aimed to determine the degree of erythrocyte adhesiveness/aggregation in the peripheral blood of individuals with inflammatory bowel disease (IBD). Fifty-two patients (24 women and 28 men) with ulcerative colitis (UC) at a mean age of 44.0 ± 16.8 years and 96 patients (44 women and 52 men) with Crohn’s disease (CD) at a mean age of 38.0 ± 15.5 years, with various degrees of disease activity, were matched to normal controls. A simple slide test and image analysis were used to determine the degree of erythrocyte adhesiveness/aggregation. CD activity index (CDAI) was determined in patients with CD, while clinical colitis activity index was applied for patients with UC. A significant (P < 0.0005) increment in the degree of erythrocyte adhesiveness/aggregation was noted in both groups of IBD patients compared with matched control groups. This increment was evident even in individuals with a low index of disease activity and during remission. The highly significant correlation with the concentrations of fibrinogen suggests that the degree of erythrocyte adhesiveness/aggregation is an inflammation-related phenomenon. An enhanced state of erythrocyte adhesiveness/aggregation was noted in the peripheral blood of patients with IBD. This might have a deleterious effect on intestinal microcirculatory flow and tissue oxygenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Soutani M, Suzuki Y, Tateishi N, et al.: Quantitative evaluation of flow dynamics of erythrocytes in microvessels: influence of erythrocyte aggregation. Am J Physiol 268:H1959–H1965, 1995

    PubMed  CAS  Google Scholar 

  2. Schmid-Schonbein H: Blood rheology and physiology of microcirculation. Ric Clin Lab 11(Suppl 1):13–33, 1981

    PubMed  Google Scholar 

  3. Bishop JJ, Nance PR, Popel AS, et al.: Effect of erythrocyte aggregation on velocity profiles in venules. Am J Physiol Heart Circ Physiol 280:H222–H236, 2001

    PubMed  CAS  Google Scholar 

  4. Mchedlishvili G, Gobejishvili L, Mamaladze A, et al.: Microcirculatory stasis induced by hemorheological disorders: further evidence. Microcirculation 6:97–106, 1999

    PubMed  CAS  Google Scholar 

  5. Cabel M, Meiselman HJ, Popel AS, et al.: Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle. Am J Physiol 272:H1020–H1032, 1997

    PubMed  CAS  Google Scholar 

  6. Mchedlishvili G, Varazashvili M, Gobejishvili L: Local RBC aggregation disturbing blood fluidity and causing stasis in microvessels. Clin Hemorheol Microcirc 26:99–106, 2002

    PubMed  Google Scholar 

  7. Tateishi N, Suzuki Y, Cicha I, et al.: O2 release from erythrocytes flowing in a narrow O2-permeable tube: effects of erythrocyte aggregation. Am J Physiol Heart Circ Physiol 281:H448–H456, 2001

    PubMed  CAS  Google Scholar 

  8. Tateishi N, Suzuki Y, Shirai M, et al.: Reduced oxygen release from erythrocytes by the acceleration-induced flow shift, observed in an oxygen-permeable narrow tube. J Biomech 35:1241–1251, 2002

    PubMed  Google Scholar 

  9. Novacek G, Vogelsang H, Genser D, et al.: Changes in blood rheology caused by Crohn’s disease. Eur J Gastroenterol Hepatol 8:1089–1093, 1996

    PubMed  CAS  Google Scholar 

  10. Best WR, Becktel JM, Singleton JW, et al.: Development of a Crohn’s disease activity index. National Cooperative Crohn’s Disease Study. Gastroenterology 70:439–444, 1976

    PubMed  CAS  Google Scholar 

  11. Walmsley RS, Ayres RC, Pounder RE, et al.: A simple clinical colitis activity index. Gut 43:29–32, 1998

    Article  PubMed  CAS  Google Scholar 

  12. Cohen S, Tolshinsky T, Rogowski O, et al.: Real time, control adjusted evaluation of intensity of the inflammatory response. J Inform Techn Healthcare 1:195–207, 2003

    Google Scholar 

  13. Fusman G, Mardi T, Justo D, et al.: Red blood cell adhesiveness/aggregation, C-reactive protein, fibrinogen and erythrocyte sedimentation rate in healthy adults and in those with atherosclerotic risk factors. Am J Cardiol 90:561–563, 2002

    PubMed  CAS  Google Scholar 

  14. Rotstein R, Landau T, Twig A, et al.: The erythrocyte adhesiveness/aggregation test (EAAT). A new biomarker to reveal the low grade subclinical smoldering inflammation individuals with atherosclerotic risk factors. Atherosclerosis 165:343–351, 2002

    PubMed  CAS  Google Scholar 

  15. Rotstein R, Fusman R, Zeltser D, et al.: The picture of inflammation: a new concept that combines the white blood cell count and erythrocyte sedimentation rate into a new hematologic diagnostic modality. Acta Haematol 106:106–114, 2001

    PubMed  CAS  Google Scholar 

  16. Sharshun Y, Brill S, Mardi T, et al.: Inflammation at a glance: erythrocyte adhesiveness/aggregation to reveal the presence of inflammation in individuals with atherothrombosis. Heart Dis 5:182–183, 2003

    PubMed  Google Scholar 

  17. International Committee for Standardization in Hematology: Recommendation of measurement of erythrocyte sedimentation rate of human blood. Immunochemistry 2:235–254, 1965

    Google Scholar 

  18. Clauss A: Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens. Acta Haematol Basel 17:237–246, 1957

    Article  CAS  Google Scholar 

  19. Rifai N, Tracy RP, Ridker PM: Clinical efficacy of an automated high-sensitivity C-reactive protein assay. Clin Chem 45:2136–2141, 1999

    PubMed  CAS  Google Scholar 

  20. Ben Ami R, Barshtein G, Zeltser D, et al.: Parameters of red blood cell aggregation as correlates of the inflammatory state. Am J Physiol Heart Circ Physiol 280:H1982–H1988, 2001

    CAS  Google Scholar 

  21. Ben Ami R, Barshtein G, Mardi T, et al.: A synergistic effect of albumin and fibrinogen on immunoglobulin-induced red blood cell aggregation. Am J Physiol Heart Circ Physiol 285:H2663–H2669, 2003

    PubMed  CAS  Google Scholar 

  22. Fabry TL: Mechanism of erythrocyte aggregation and sedimentation. Blood 70:1572–1576, 1987

    PubMed  CAS  Google Scholar 

  23. Imaizumi K, Shiga T: Effect of immunoglobulins and IgG-fragments on the human erythrocyte aggregation, studied by rheoscope combined with image analyzer. Biorheology 20:569–577, 1983

    PubMed  CAS  Google Scholar 

  24. Weng X, Cloutier G, Beaulieu R, et al.: Influence of acute-phase proteins on erythrocyte aggregation. Am J Physiol 271:H2346–H2352, 1996

    PubMed  CAS  Google Scholar 

  25. Weng X, Roederer GO, Beaulieu R, et al.: Contribution of acute-phase proteins and cardiovascular risk factors to erythrocyte aggregation in normolipidemic and hyperlipidemic individuals. Thromb Haemost 80:903–908, 1998

    PubMed  CAS  Google Scholar 

  26. Schechner V, Shapira I, Berliner S, et al.: Significant dominance of fibrinogen over immunoglobulins, C-reactive protein, cholesterol and triglycerides in maintaining increased red blood cell adhesiveness/aggregation: A model in hypercholaesterolemic patients. Eur J Clin Invest 33:955–961, 2003

    PubMed  CAS  Google Scholar 

  27. Pepys MB, Hirschfield GM: C-reactive protein: a critical update. J Clin Invest 111:1805–1812, 2003

    Article  PubMed  CAS  Google Scholar 

  28. Maresca G, Di Blasio A, Marchioli R, et al.: Measuring plasma fibrinogen to predict stroke and myocardial infarction: an update. Arterioscler Thromb Vasc Biol 19:1368–1377, 1999

    PubMed  CAS  Google Scholar 

  29. Barron HV, Cannon CP, Murphy SA, et al.: Association between white blood cell count, epicardial blood flow, myocardial perfusion, and clinical outcomes in the setting of acute myocardial infarction. A thrombolysis in myocardial infarction 10 substudy. Circulation 102:2329–2334, 2000

    PubMed  CAS  Google Scholar 

  30. Ballou SP, Lozanski G: Induction of inflammatory cytokine release from cultured human monocytes by C-reactive protein. Cytokine 4:361–368, 1992

    PubMed  CAS  Google Scholar 

  31. Cermak J, Key NS, Bach RR, et al.: C-reactive protein induces human peripheral blood monocytes to synthesis tissue factor. Thromb Haemost 84:730–731, 2000

    Google Scholar 

  32. Torzewski M, Rist C, Mortensen RF, et al.: C-reactive protein in the arterial intima: role of C-reactive protein receptor-dependent monocyte recruitment in atherogenesis. Arterioscler Thromb Vasc Biol 20:2094–2099, 2000

    PubMed  CAS  Google Scholar 

  33. Labarrere CA, Lee JB, Nelson DR, et al.: C-reactive protein, arterial endothelial activation, and development of transplant coronary artery disease: a prospective study. Lancet 360:1462–1467, 2002

    PubMed  CAS  Google Scholar 

  34. Danenberg HD, Szalai AJ, Swaminathan RV, et al.: Increased thrombosis after arterial injury in human C-reactive protein-transgenic mice. Circulation 108:512–515, 2003

    PubMed  CAS  Google Scholar 

  35. Kobayashi S, Inoue N, Ohashi Y, et al.: Interaction of oxidative stress and inflammatory response in coronary plaque instability: important role of C-reactive protein. Arterioscler Thromb Vasc Biol 23:1398–1404, 2003

    PubMed  CAS  Google Scholar 

  36. Klingel R, Fassbender C, Fassbender T, et al.: Rheopheresis: rheologic, functional and structural aspects. Ther Apher 4:348–357, 2000

    PubMed  CAS  Google Scholar 

  37. Hadengue A, Razavian SM, Del-Pino M, et al.: Influence of sialic acid on erythrocyte aggregation in hypercholesterolemia. Thromb Haemost 76:944–949, 1996

    PubMed  CAS  Google Scholar 

  38. Cicha I, Suzuki Y, Tateishi N, et al.: Enhancement of red blood cell aggregation by plasma triglycerides. Clin Hemorheol Microcirc 24:247–255, 2001

    PubMed  CAS  Google Scholar 

  39. Rotstein R, Zeltser D, Shapira I, et al.: An inflammation meter to reveal the presence and extent of inflammation in older patients. J Am Gerontol Soc 48:1739–1741, 2000

    CAS  Google Scholar 

  40. Rotstein R, Zeltser D, Shapira I, et al.: The usefulness of an inflammation meter to detect the presence of infection/inflammation in elderly patients. J Gerontol A Biol Sci Med Sci 57:M122–M127, 2002

    PubMed  Google Scholar 

  41. Rogowski O, Zeltser D, Rotstein R, et al.: Correlated expression of adhesive properties for both white and red blood cells during inflammation. Biorheology 37:361–370, 2000

    PubMed  CAS  Google Scholar 

  42. Gamzu R, Rotstein R, Fusman R, et al.: Increased erythrocyte adhesiveness and aggregation in peripheral venous blood of women with pregnancy-induced hypertension. Obstet Gynecol 98:307–312, 2001

    PubMed  CAS  Google Scholar 

  43. Lominadze D, Dean WL: Involvement of fibrinogen specific binding in erythrocyte aggregation. FEBS Lett 517:41–44, 2002

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir Arber MD, MSc, MBA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zilberman, L., Rogowski, O., Rozenblat, M. et al. Inflammation-Related Erythrocyte Aggregation in Patients with Inflammatory Bowel Disease. Dig Dis Sci 50, 677–683 (2005). https://doi.org/10.1007/s10620-005-2556-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-005-2556-2

Keywords

Navigation