Skip to main content
Log in

Carnosine, taurine and enzyme activities of human skeletal muscle fibres from elderly subjects with osteoarthritis and young moderately active subjects

  • ORIGINAL PAPER
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Ageing is associated with a reduction in muscle carnosine (β-alanyl-l-histidine), but there are no data on the changes specifically in type I and type II muscle fibres. Given the higher carnosine content of type II fibers, changes observed in whole muscle may be secondary to a shift in fibre composition. Carnosine, β-alanine, histidine, taurine, and citrate synthase (CS) and glycogen phosphorylase (Phos), were measured in pools of single muscle fibres from freeze-dried muscle biopsies of vastus lateralis of nine elderly sedentary subjects (65–80 years) with osteoarthritis of the knee and undergoing total knee replacement, and nine young moderately active healthy subjects (20–35 years). Fibres were characterised as type I or II by myosin ATPase activity. Carnosine was 53.2% lower in type II fibres of older subjects resulting in an estimated 7% (and most probably still higher) decline in intracellular physico-chemical buffering capacity. Younger subjects showed higher CS activities in type I and higher Phos activities in type II fibres. These differences were less apparent in elderly subjects. Possible causes for the change in the carnosine content are reduced physical activity, reduced meat intake, or the result of progressive denervation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe H (2000) Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Mosc) 65:757–765

    CAS  Google Scholar 

  • Airaksinen EM, Paljarvi L, Partanen J, Collan Y, Laakso R, Pentikainen T (1990) Taurine in normal and diseased human skeletal muscle. Acta Neurol Scand 81:1–7

    Article  PubMed  CAS  Google Scholar 

  • Aniansson A, Grimby G, Hedberg M, Krotkiewsky M (1981) Muscle morphology enzyme activity and muscle strength in elderly men and women. Clin Physiol 1:73–86

    Google Scholar 

  • Aniansson A, Hedberg G, Henning GB, Grimby G (1986) Muscle morphology, enzymatic activity, and muscle strength in elderly men. Muscle Nerve 9:585–591

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom J (1962) Muscle electrolytes in man determined by neutron activation analysis on needle biopsy specimens: A study in normal subjects, kidney patients and patients with chronic diarrhoea. Scand J Clin Lab Invest 14:Suppl 68

    Google Scholar 

  • Boldyrev AA, Koldobski A, Kurella E, Maltseva V, Stvolinski S (1993) Natural histidine-containing dipeptide carnosine as a potent hydrophilic antioxidant with membrane stabilizing function. A biomedical aspect Mol Chem Neuropathol 19:185–192

    CAS  Google Scholar 

  • Brooke MH, Kaiser KK (1970) Muscle fibre types: how many and what kind. Arch Neurology 23:369–379

    CAS  Google Scholar 

  • Carter SL, Rennie CD, Hamilton SJ, Tarnopolsky MA (2001) Changes in skeletal muscle in males and females following endurance training. Can J Physiol Pharmacol 79:386–92

    Article  PubMed  CAS  Google Scholar 

  • Coogan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM, Holloszy JO (1992) Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J Gerontol Biol Sci 46B: 71–76

    Google Scholar 

  • Crush KG (1970) Carnosine and related substances in animal tissues. Comp Biochem Physiol 34:3–30

    Article  PubMed  CAS  Google Scholar 

  • Cuisinier C, Michotte De Welle J, Verbeeck RK, Poortmans JR, Ward R, Sturbois X, Francaux M (2002) Role of taurine in osmoregulation during endurance exercise. Eur J Appl Physiol 876:489–95

    Article  CAS  Google Scholar 

  • De Luca A, Tricarico S, Pierno D, Camerino C (1994) Aging and chloride channel regulation in rat fast-twitch muscle fibres. Pflugers Arch 427:80–85

    Article  PubMed  Google Scholar 

  • Dunnett M, Harris RC (1995) Carnosine and Taurine contents of different fibre types in the middle gluteal muscle of the Thoroughbred horse. Equine Vet J Suppl 18:214–217

    Google Scholar 

  • Dunnett M, Harris RC (1997) High-performance liquid chromatographic determination of imidazole dipeptides, histidine, 1-methylhistidine and 3-methylhistidine in equine and camel muscle and individual muscle fibres. J Chromat B Biomedical Applications 688:47–55

    Article  CAS  Google Scholar 

  • Dunnett M, Harris RC (1999) Influence of oral ß-alanine and L-histidine supplementation on the carnosine content of the gluteus medius. Equine Vet J Suppl 30:499–504

    PubMed  CAS  Google Scholar 

  • Dunnett M, Harris RC, Soliman MZ, Suwar AAS (1997) Carnosine, anserine and taurine contents in individual fibres from the middle gluteal muscle of the camel. Res Vet Sci 62:213–216

    Article  PubMed  CAS  Google Scholar 

  • Essen-Gustavsson B, Borges O (1986) Histochemical and metabolic characteristics of human skeletal muscle in relation to age. Acta Physiol Scand 126:107–114

    PubMed  CAS  Google Scholar 

  • Hakkinen K, Newton RU, Gordon SE (1998) Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men. J Gerontol Biol Sci 53:B415-B423

    CAS  Google Scholar 

  • Harris RC, Dunnett M, Greenhaff PL (1998) Carnosine and taurine contents in individual fibres of human vastus lateralis muscle. J Sport Sci 16:639–643

    Article  Google Scholar 

  • Harris RC, Essen B, Hultman E (1976) Glycogen phosphorylase activity in biopsy samples and single muscle fibres of musculus quadriceps femoris of man at rest. Scand J Clin Lab Invest 36:521-526

    PubMed  CAS  Google Scholar 

  • Harris RC, Marlin DJ, Dunnett M, Snow DH, Hultman E (1990) Muscle buffering capacity and dipeptide content in the thoroughbred horse, greyhound dog and man. Comp Biochem Physiol 97A: 249–251

    Article  CAS  Google Scholar 

  • Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA (2006) The absorption of orally supplied ß-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 30:279–289

    Article  PubMed  CAS  Google Scholar 

  • Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA (2006) Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity Amino Acids (Epub ahead of print Jul 28)

  • Hipkiss AR (2000) Carnosine and protein carbonyl groups: a possible relationship. Biochemistry (Mosc) 65:771–778

    CAS  Google Scholar 

  • Hipkiss AR, Michaelis J, Syrris P (1995) Non-enzymatic glycosylation of the dipeptide L-carnosine, a potential anti-protein-cross-linking agent. FEBS Lett 371:81–85

    Article  PubMed  CAS  Google Scholar 

  • Horinishi H, Grillo M, Margolis FL (1978) Purification and characterization of carnosine synthetase from mouse olfactory bulbs. J Neurochem 31:909–919

    Article  PubMed  CAS  Google Scholar 

  • Huxtable RJ (1992) The physiological actions of taurine. Physiol Rev 72:101–142

    PubMed  CAS  Google Scholar 

  • Iwata H, Baba A (1985) Specific increases of taurine in denervated skeletal muscle. Prog Clin Biol Res 179:397–405

    PubMed  CAS  Google Scholar 

  • Johnson P, Hammer JL (1993a) Histidine dipeptide levels in ageing and hypertensive rat skeletal and cardiac muscles. Comp Biochem Physiol 103B:981–984

    Google Scholar 

  • Johnson P, Hammer JL (1993b) Cardiac and skeletal muscle enzyme levels in hypertensive and ageing rats. Comp Biochem Physiol 104B:63–67

    CAS  Google Scholar 

  • Kish SJ, Perry TL, Hansen S (1978) Regional distribution of homocarnosine-carnosine synthetase and homocarnosinase in human brain. J Neurochem 32:1629–1636

    Article  Google Scholar 

  • Komura J, Tamai I, Senmaru M, Terasaki T, Sai Y, Tsuji A (1996) Sodium and chloride ion-dependent transport of beta-alanine across the blood-brain barrier. J Neurochem 67:330–335

    Article  PubMed  CAS  Google Scholar 

  • Landon DN (1982) Skeletal muscle – normal morphology, development and innervation. In: Mastaglia FL, Walton J (eds) Skeletal muscle pathology, Churchill, Livingstone, London, pp 1–87

    Google Scholar 

  • Lenney JF, George RP, Weiss AM, Kucera CM, Chan PW, Rinzler GS (1982) Human carnosinase, and activation by cadmium. Clin Chem Acta 123:221–231

    Article  CAS  Google Scholar 

  • Lowry OH, Passoneau JV (1972) A flexible system of enzymatic analysis. Academic Press, New York, pp 291

    Google Scholar 

  • Ng RH, Marshall FD (1978) Regional and subcellular distribution of homocarnosine-carnosine synthetase in the central nervous system. J Neurochem 30:187–190

    Article  CAS  Google Scholar 

  • Orlander J, Kiesling KJ, Larsson L, Karlsson J, Aniansson A (1978) Skeletal muscle metabolism and ultrastructure in relation to age in sedentary men. Acta Physiol Scand 104:249–261

    PubMed  CAS  Google Scholar 

  • Parkhouse WS, McKenzie DC, Hochachka PW, Ovalle WK (1985) Buffering capacity of deproteinized human vastus lateralis muscle. J Appl Physiol 58:14–17

    PubMed  CAS  Google Scholar 

  • Schantz PG, Henriksson. J (1987) Enzyme levels of the NADH shuttle systems: measurements in isolated muscle fibres from humans of differing physical activity. Acta Physiol Scand 129:505–515

    Article  PubMed  CAS  Google Scholar 

  • Sewell DA, Harris RC, Marlin DJ (1994) Skeletal muscle characteristics in 2 year-old race-trained thoroughbred horses. Comp Biochem Physiol 108:87–96

    Article  CAS  Google Scholar 

  • Sjostrom M, Lexell J, Downham DY (1992) Differences in number and fibre type proportion within fascicles: A quantitative morphological study of whole vastus lateralis muscle from childhood to old age. Anatom Rec 234:183–189

    Article  CAS  Google Scholar 

  • Skaper SD, Das S, Marshall FD (1973) Some properties of a homocarnosine-carnosine synthetase isolated from rat brain. J Neurochem 21:1429–1445

    Article  PubMed  CAS  Google Scholar 

  • Steel DS, Smith GL, Miller DJ (1990) The effects of taurine on Ca2+ uptake by the sarcoplasmic reticulum and Ca2+ sensitivity of chemically skinned rat heart. J Physiol 422:499–511

    Google Scholar 

  • Stuerenburg HJ, Kunze K (1999) Concentrations of free carnosine (a putative membrane-protective antioxidant) in human muscle Biopsies and rat muscles. Archiv Gerontol Geriatrics 29:107–113

    Article  CAS  Google Scholar 

  • Suyama M, Suzuki T, Maruyama M., Saito K (1970) Determination of carnosine, anserine and balanine in the muscles of animals. Bull Jap Soc Sci Fish 36:1048–1053

    Google Scholar 

  • Tallon MJ, Harris RC, Boobis L, Fallowfield J, Wise JA (2005) The carnosine content of vastus lateralis is elevated in resistance trained bodybuilders. J. Strength Condit Res 19:725–729

    Article  Google Scholar 

  • Trounce I, Byrne E, Marzuki S (1989) Decline in skeletal muscle mitochondrial respiration chain function with ageing. Lancet 2:44–45

    Google Scholar 

  • Yasuda N, Glover EI, Phillips SM, Isfort RJ, Tarnopolsky MA (2005) Sex-based differences in skeletal muscle function and morphology with short-term limb immobilization. J Appl Physiol 99:1085–1092

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger C. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tallon, M.J., Harris, R.C., Maffulli, N. et al. Carnosine, taurine and enzyme activities of human skeletal muscle fibres from elderly subjects with osteoarthritis and young moderately active subjects. Biogerontology 8, 129–137 (2007). https://doi.org/10.1007/s10522-006-9038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-006-9038-6

Keywords

Navigation