Skip to main content

Advertisement

Log in

Endothelial Glycocalyx: Permeability Barrier and Mechanosensor

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Endothelial cells are covered with a polysaccharide rich layer more than 400 nm thick, mechanical properties of which limit access of circulating plasma components to endothelial cell membranes. The barrier properties of this endothelial surface layer are deduced from the rate of tracer penetration into the layer and the mechanics of red and white cell movement through capillary microvessels. This review compares the mechanosensor and permeability properties of an inner layer (100–150 nm, close to the endothelial membrane) characterized as a quasi-periodic structure which accounts for key aspects of transvascular exchange and vascular permeability with those of the whole endothelial surface layers. We conclude that many of the barrier properties of the whole surface layer are not representative of the primary fiber matrix forming the molecular filter determining transvascular exchange. The differences between the properties of the whole layer and the inner glycocalyx structures likely reflect dynamic aspects of the endothelial surface layer including tracer binding to specific components, synthesis and degradation of key components, activation of signaling pathways in the endothelial cells when components of the surface layer are lost or degraded, and the spatial distribution of adhesion proteins in microdomains of the endothelial cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Adamson, R. H., and G. Clough. Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J. Physiol. 445:473–486, 1992.

    PubMed  CAS  Google Scholar 

  2. Adamson, R. H., J. F. Lenz, X. Zhang, G. N. Adamson, S. Weinbaum, F. E. Curry, et al. Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J. Physiol. 557:889–907, 2004.

    Article  PubMed  CAS  Google Scholar 

  3. Adamson, R. H., R. K. Sarai, S. Weinbaum, and F. E. Curry. Retrograde shear stress modulates rat mesentery microvessel permeability and endothelial adhesion structures. FASEB J. 23:950–955, 2010.

    Google Scholar 

  4. Arkill, K. P., C. Knupp, C. C. Michel, C. R. Neal, K. Qvortrup, J. Rostgaard, and J. M. Squire. Similar endothelial glycocalyx structures in microvessels from a range of Mammalian tissues: evidence for a common filtering mechanism? Biophys. J. 101:1046–1056, 2011.

    Article  PubMed  CAS  Google Scholar 

  5. Becker, B. F., D. Chappell, D. Bruegger, T. Annecke, and M. Jacob. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc. Res. 87:300–310, 2010.

    Article  PubMed  CAS  Google Scholar 

  6. Broekhuizen, L. N., B. A. Lemkes, H. L. Mooij, M. C. Meuwese, H. Verberne, F. Holleman, R. O. Schlingemann, M. Nieuwdorp, E. S. Stroes, and H. Vink. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 53:2646–2655, 2010.

    Article  PubMed  CAS  Google Scholar 

  7. Bruegger, D., M. Rehm, J. Abicht, J. O. Paul, M. Stoeckelhuber, M. Pfirrmann, B. Reichart, B. F. Becker, and F. Christ. Shedding of the endothelial glycocalyx during cardiac surgery: on-pump versus off-pump coronary artery bypass graft surgery. J. Thorac. Cardiovasc. Surg. 138:1445–1447, 2009.

    Article  PubMed  Google Scholar 

  8. Chappell, D., K. Hofmann-Kiefer, M. Jacob, M. Rehm, J. Briegel, U. Welsch, P. Conzen, and B. F. Becker. TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res. Cardiol. 104:78–89, 2009.

    Article  PubMed  CAS  Google Scholar 

  9. Chappell, D., M. Jacob, O. Paul, M. Rehm, U. Welsch, M. Stoeckelhuber, P. Conzen, and B. F. Becker. The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ. Res. 104:1313–1317, 2009.

    Article  PubMed  CAS  Google Scholar 

  10. Clough, G., and C. C. Michel. The role of vesicles in the transport of ferritin through frog endothelium. J. Physiol. 315:127–142, 1981.

    PubMed  CAS  Google Scholar 

  11. Clough, G., C. C. Michel, and M. E. Phillips. Inflammatory changes in permeability and ultrastructure of single vessels in the frog mesenteric microcirculation. J. Physiol. 395:99–114, 1988.

    PubMed  CAS  Google Scholar 

  12. Constantinescu, A. A., H. Vink, and J. A. Spaan. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler. Thromb. Vasc. Biol. 23:1541–1547, 2003.

    Article  PubMed  CAS  Google Scholar 

  13. Curry, F. R., and R. H. Adamson. Vascular permeability modulation at the cell, microvessel, or whole organ level: towards closing gaps in our knowledge. Cardiovasc. Res. 87:218–229, 2010.

    Article  PubMed  CAS  Google Scholar 

  14. Curry, F. E., and C. C. Michel. A fiber matrix model of capillary permeability. Microvasc. Res. 20:96–99, 1980.

    Article  PubMed  CAS  Google Scholar 

  15. Desjardins, C., and B. R. Duling. Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am. J. Physiol. 258:H647–H654, 1990.

    PubMed  CAS  Google Scholar 

  16. Ebong, E. E., F. P. Macaluso, D. C. Spray, and J. M. Tarbell. Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler. Thromb. Vasc. Biol. 31(8):1908–1915, 2011.

    Article  PubMed  CAS  Google Scholar 

  17. Feng, J., and S. Weinbaum. Lubrication theory in highly compressible porous media: the mechanics of skiing, from red cells to humans. J. Fluid Mech. 422:281–317, 2000.

    Article  CAS  Google Scholar 

  18. Florian, J. A., J. R. Kosky, K. Ainslie, Z. Pang, R. O. Dull, and J. M. Tarbell. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ. Res. 93:e136–e142, 2003.

    Article  PubMed  CAS  Google Scholar 

  19. Forsyth, A. M., J. Wan, P. D. Owrutsky, M. Abkarian, and H. A. Stone. Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release. Proc. Natl. Acad. Sci. USA 108:10986–10991, 2011.

    Article  PubMed  CAS  Google Scholar 

  20. Gao, L., and H. H. Lipowsky. Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes. Microvasc. Res. 80:394–401, 2010.

    Article  PubMed  CAS  Google Scholar 

  21. Giantsos, K. M., P. Kopeckova, and R. O. Dull. The use of an endothelium-targeted cationic copolymer to enhance the barrier function of lung capillary endothelial monolayers. Biomaterials 30:5885–5891, 2009.

    Article  PubMed  CAS  Google Scholar 

  22. Giantsos-Adams, K., V. Lopez-Quintero, P. Kopeckova, J. Kopecek, J. M. Tarbell, and R. Dull. Study of the therapeutic benefit of cationic copolymer administration to vascular endothelium under mechanical stress. Biomaterials 32:288–294, 2011.

    Article  PubMed  CAS  Google Scholar 

  23. Gopalan, P. K., A. R. Burns, S. I. Simon, S. Sparks, L. V. McIntire, and C. W. Smith. Preferential sites for stationary adhesion of neutrophils to cytokine-stimulated HUVEC under flow conditions. J. Leukoc. Biol. 68:47–57, 2000.

    PubMed  CAS  Google Scholar 

  24. Gouverneur, M., J. A. Spaan, H. Pannekoek, R. D. Fontijn, and H. Vink. Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 290:H458–H462, 2006.

    Article  PubMed  CAS  Google Scholar 

  25. Gudi, S., I. Huvar, C. R. White, N. L. McKnight, N. Dusserre, G. R. Boss, and J. A. Frangos. Rapid activation of Ras by fluid flow is mediated by Galpha(q) and Gbetagamma subunits of heterotrimeric G proteins in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 23:994–1000, 2003.

    Article  PubMed  CAS  Google Scholar 

  26. He, P., and F. E. Curry. Albumin modulation of capillary permeability: role of endothelial cell [Ca2+]i. Am. J. Physiol. 265:H74–H82, 1993.

    PubMed  CAS  Google Scholar 

  27. He, P., J. Wang, and M. Zeng. Leukocyte adhesion and microvessel permeability. Am. J. Physiol. Heart Circ. Physiol. 278:H1686–H1694, 2000.

    PubMed  CAS  Google Scholar 

  28. Henry, C. B., and B. R. Duling. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am. J. Physiol. 277:H508–H514, 1999.

    PubMed  CAS  Google Scholar 

  29. Henry, C. B., and B. R. Duling. TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 279:H2815–H2823, 2000.

    PubMed  CAS  Google Scholar 

  30. Hierck, B. P., K. Van der Heiden, F. E. Alkemade, S. Van de Pas, J. V. Van Thienen, B. C. Groenendijk, W. H. Bax, A. Van der Laarse, M. C. Deruiter, A. J. Horrevoets, R. E. Poelmann, et al. Primary cilia sensitize endothelial cells for fluid shear stress. Dev. Dyn. 237:725–735, 2008.

    Article  PubMed  CAS  Google Scholar 

  31. Hu, X., and S. Weinbaum. A new view of Starling’s hypothesis at the microstructural level. Microvasc. Res. 58:281–304, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Huxley, V. H., and F. E. Curry. Albumin modulation of capillary permeability: test of an adsorption mechanism. Am. J. Physiol. 248:H264–H273, 1985.

    PubMed  CAS  Google Scholar 

  33. Huxley, V. H., and D. A. Williams. Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am. J. Physiol. Heart Circ. Physiol. 278:H1177–H1185, 2000.

    PubMed  CAS  Google Scholar 

  34. Jacob, R. Agonist-stimulated divalent cation entry into single cultured human umbilical vein endothelial cells. J. Physiol. 421:55–77, 1990.

    PubMed  CAS  Google Scholar 

  35. Jalali, S., M. A. del Pozo, K. Chen, H. Miao, Y. Li, M. A. Schwartz, J. Y. Shyy, and S. Chien. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl. Acad. Sci. USA 98:1042–1046, 2001.

    Article  PubMed  CAS  Google Scholar 

  36. Kajimura, M., and C. C. Michel. Flow modulates the transport of K+ through the walls of single perfused mesenteric venules in anaesthetised rats. J. Physiol. 521(Pt 3):665–677, 1999.

    Article  PubMed  CAS  Google Scholar 

  37. Kim, M. H., N. R. Harris, and J. M. Tarbell. Regulation of capillary hydraulic conductivity in response to an acute change in shear. Am. J. Physiol. Heart Circ. Physiol. 289:H2126–H2135, 2005.

    Article  PubMed  CAS  Google Scholar 

  38. Laurent, T. C., and J. R. Fraser. Hyaluronan. FASEB J. 6:2397–2404, 1992.

    PubMed  CAS  Google Scholar 

  39. Levick, J. R., and C. C. Michel. Microvascular fluid exchange and the revised Starling principle. Cardiovasc. Res. 87:198–210, 2010.

    Article  PubMed  CAS  Google Scholar 

  40. Lopez-Quintero, S. V., R. Amaya, M. Pahakis, and J. M. Tarbell. The endothelial glycocalyx mediates shear-induced changes in hydraulic conductivity. Am. J. Physiol. Heart Circ. Physiol. 296:H1451–H1456, 2009.

    Article  PubMed  CAS  Google Scholar 

  41. Luft, J. H. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed. Proc. 25:1773–1783, 1966.

    PubMed  CAS  Google Scholar 

  42. Marechal, X., R. Favory, O. Joulin, D. Montaigne, S. Hassoun, B. Decoster, F. Zerimech, and R. Neviere. Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock 29:572–576, 2008.

    PubMed  CAS  Google Scholar 

  43. Melchior, B., and J. A. Frangos. Shear-induced endothelial cell–cell junction inclination. Am. J. Physiol. Cell Physiol. 299:C621–C629, 2010.

    Article  PubMed  CAS  Google Scholar 

  44. Michel, C. C. Capillary permeability and how it may change. J. Physiol. 404:1–29, 1988.

    PubMed  CAS  Google Scholar 

  45. Michel, C. C., and F. E. Curry. Microvascular permeability. Physiol. Rev. 79:703–761, 1999.

    PubMed  CAS  Google Scholar 

  46. Mulivor, A. W., and H. H. Lipowsky. Inhibition of glycan shedding and leukocyte–endothelial adhesion in postcapillary venules by suppression of matrixmetalloprotease activity with doxycycline. Microcirculation 16:657–666, 2009.

    Article  PubMed  CAS  Google Scholar 

  47. Muller, W. A. Mechanisms of transendothelial migration of leukocytes. Circ. Res. 105:223–230, 2009.

    Article  PubMed  CAS  Google Scholar 

  48. Neal, C. R., and D. O. Bates. Measurement of hydraulic conductivity of single perfused Rana mesenteric microvessels between periods of controlled shear stress. J. Physiol. 543:947–957, 2002.

    Article  PubMed  CAS  Google Scholar 

  49. Nieuwdorp, M., M. C. Meuwese, H. L. Mooij, M. H. van Lieshout, A. Hayden, M. Levi, J. C. Meijers, C. Ince, J. J. Kastelein, H. Vink, and E. S. Stroes. Tumor necrosis factor-alpha inhibition protects against endotoxin-induced endothelial glycocalyx perturbation. Atherosclerosis 202:296–303, 2009.

    Article  PubMed  CAS  Google Scholar 

  50. Nieuwdorp, M., H. L. Mooij, J. Kroon, B. Atasever, J. A. Spaan, C. Ince, F. Holleman, M. Diamant, R. J. Heine, J. B. Hoekstra, J. J. Kastelein, E. S. Stroes, and H. Vink. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 55:1127–1132, 2006.

    Article  PubMed  CAS  Google Scholar 

  51. Nieuwdorp, M., T. W. van Haeften, M. C. Gouverneur, H. L. Mooij, M. H. van Lieshout, M. Levi, J. C. Meijers, F. Holleman, J. B. Hoekstra, H. Vink, J. J. Kastelein, and E. S. Stroes. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55:480–486, 2006.

    Article  PubMed  CAS  Google Scholar 

  52. Noble, M. I., A. J. Drake-Holland, and H. Vink. Hypothesis: arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM 101:513–518, 2008.

    Article  PubMed  CAS  Google Scholar 

  53. Ogston, A. G. The spaces in a uniform random suspension of fibres. Trans. Faraday Soc. 54:1754–1757, 1958.

    Article  Google Scholar 

  54. Ogston, A. G., and C. C. Michel. General descriptions of passive transport of neutral solute and solvent through membranes. Prog. Biophys. Mol. Biol. 34:197–217, 1978.

    Article  PubMed  CAS  Google Scholar 

  55. Perrin, R. M., S. J. Harper, and D. O. Bates. A role for the endothelial glycocalyx in regulating microvascular permeability in diabetes mellitus. Cell Biochem. Biophys. 49:65–72, 2007.

    Article  PubMed  CAS  Google Scholar 

  56. Platts, S. H., and B. R. Duling. Adenosine A3 receptor activation modulates the capillary endothelial glycocalyx. Circ. Res. 94:77–82, 2004.

    Article  PubMed  CAS  Google Scholar 

  57. Potter, D. R., and E. R. Damiano. The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ. Res. 102:770–776, 2008.

    Article  PubMed  CAS  Google Scholar 

  58. Pries, A. R., and W. M. Kuebler. Normal endothelium. Handb. Exp. Pharmacol. 1–40, 2006.

  59. Pries, A. R., T. W. Secomb, H. Jacobs, M. Sperandio, K. Osterloh, and P. Gaehtgens. Microvascular blood flow resistance: role of endothelial surface layer. Am. J. Physiol. 273:H2272–H2279, 1997.

    PubMed  CAS  Google Scholar 

  60. Rehm, M., D. Bruegger, F. Christ, P. Conzen, M. Thiel, M. Jacob, D. Chappell, M. Stoeckelhuber, U. Welsch, B. Reichart, K. Peter, and B. F. Becker. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 116:1896–1906, 2007.

    Article  PubMed  CAS  Google Scholar 

  61. Rehm, M., M. Haller, V. Orth, U. Kreimeier, M. Jacob, H. Dressel, S. Mayer, H. Brechtelsbauer, and U. Finsterer. Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology 95:849–856, 2001.

    Article  PubMed  CAS  Google Scholar 

  62. Reitsma, S., D. W. Slaaf, H. Vink, M. A. van Zandvoort, and M. G. oude Egbrink. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 454:345–359, 2007.

    Article  PubMed  CAS  Google Scholar 

  63. Renkin, E. M., and F. E. Curry. Transport of water and solutes across capillary endothelium. In: Membrane Transport in Physiology, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Heidelberg: Springer, 1978, pp. 1–45.

    Google Scholar 

  64. Rostgaard, J., and K. Qvortrup. Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae. Microvasc. Res. 53:1–13, 1997.

    Article  PubMed  CAS  Google Scholar 

  65. Rostgaard, J., and K. Qvortrup. Sieve plugs in fenestrae of glomerular capillaries—site of the filtration barrier? Cells Tissues Organs 170:132–138, 2002.

    Article  PubMed  Google Scholar 

  66. Secomb, T. W., R. Hsu, and A. R. Pries. Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am. J. Physiol. Heart Circ. Physiol. 281:H629–H636, 2001.

    PubMed  CAS  Google Scholar 

  67. Simon, S. I., M. R. Sarantos, C. E. Green, and U. Y. Schaff. Leukocyte recruitment under fluid shear: mechanical and molecular regulation within the inflammatory synapse. Clin. Exp. Pharmacol. Physiol. 36:217–224, 2009.

    Article  PubMed  CAS  Google Scholar 

  68. Singleton, P. A., S. M. Dudek, S. F. Ma, and J. G. Garcia. Transactivation of sphingosine 1-phosphate receptors is essential for vascular barrier regulation. Novel role for hyaluronan and CD44 receptor family. J. Biol. Chem. 281:34381–34393, 2006.

    Article  PubMed  CAS  Google Scholar 

  69. Sperandio, M., C. A. Gleissner, and K. Ley. Glycosylation in immune cell trafficking. Immunol. Rev. 230:97–113, 2009.

    Article  PubMed  CAS  Google Scholar 

  70. Squire, J. M., M. Chew, G. Nneji, C. Neal, J. Barry, and C. Michel. Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J. Struct. Biol. 136:239–255, 2001.

    Article  PubMed  CAS  Google Scholar 

  71. Stevens, A. P., V. Hlady, and R. O. Dull. Fluorescence correlation spectroscopy can probe albumin dynamics inside lung endothelial glycocalyx. Am. J. Physiol. Lung Cell. Mol. Physiol. 293:L328–L335, 2007.

    Article  PubMed  CAS  Google Scholar 

  72. Sumagin, R., J. M. Kuebel, and I. H. Sarelius. Leukocyte rolling and adhesion both contribute to regulation of microvascular permeability to albumin via ligation of ICAM-1. Am. J. Physiol. Cell Physiol. 301(4):C777–C779, 2011.

    Article  Google Scholar 

  73. Tarbell, J. M. Shear stress and the endothelial transport barrier. Cardiovasc. Res. 87:320–330, 2010.

    Article  PubMed  CAS  Google Scholar 

  74. Tarbell, J. M., and M. Y. Pahakis. Mechanotransduction and the glycocalyx. J. Intern. Med. 259:339–350, 2006.

    Article  PubMed  CAS  Google Scholar 

  75. Thi, M. M., J. M. Tarbell, S. Weinbaum, and D. C. Spray. The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc. Natl. Acad. Sci. USA 101:16483–16488, 2004.

    Article  PubMed  CAS  Google Scholar 

  76. Trung, D. T., and B. Wills. Systemic vascular leakage associated with dengue infections—the clinical perspective. Curr. Top. Microbiol. Immunol. 338:57–66, 2010.

    Article  PubMed  CAS  Google Scholar 

  77. Turner, M. R., G. Clough, and C. C. Michel. The effects of cationised ferritin and native ferritin upon the filtration coefficient of single frog capillaries. Evidence that proteins in the endothelial cell coat influence permeability. Microvasc. Res. 25:205–222, 1983.

    Article  PubMed  CAS  Google Scholar 

  78. Tzima, E., M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser, and M. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431, 2005.

    Article  PubMed  CAS  Google Scholar 

  79. van den Berg, B. M., H. Vink, and J. A. Spaan. The endothelial glycocalyx protects against myocardial edema. Circ. Res. 92:592–594, 2003.

    Article  PubMed  Google Scholar 

  80. van Haaren, P. M., E. VanBavel, H. Vink, and J. A. Spaan. Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy. Am. J. Physiol. Heart Circ. Physiol. 285:H2848–H2856, 2003.

    PubMed  Google Scholar 

  81. VanTeeffelen, J. W., J. Brands, and H. Vink. Agonist-induced impairment of glycocalyx exclusion properties: contribution to coronary effects of adenosine. Cardiovasc. Res. 87:311–319, 2010.

    Article  PubMed  CAS  Google Scholar 

  82. VanTeeffelen, J. W., A. A. Constantinescu, J. Brands, J. A. Spaan, and H. Vink. Bradykinin- and sodium nitroprusside-induced increases in capillary tube haematocrit in mouse cremaster muscle are associated with impaired glycocalyx barrier properties. J. Physiol. 586:3207–3218, 2008.

    Article  PubMed  CAS  Google Scholar 

  83. Vink, H., A. A. Constantinescu, and J. A. Spaan. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet–endothelial cell adhesion. Circulation 101:1500–1502, 2000.

    PubMed  CAS  Google Scholar 

  84. Vink, H., and B. R. Duling. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res. 79:581–589, 1996.

    PubMed  CAS  Google Scholar 

  85. Vink, H., and B. R. Duling. Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am. J. Physiol. Heart Circ. Physiol. 278:H285–H289, 2000.

    PubMed  CAS  Google Scholar 

  86. Weinbaum, S., J. M. Tarbell, and E. R. Damiano. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9:121–167, 2007.

    Article  PubMed  CAS  Google Scholar 

  87. Weinbaum, S., X. Zhang, Y. Han, H. Vink, and S. C. Cowin. Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl. Acad. Sci. USA 100:7988–7995, 2003.

    Article  PubMed  CAS  Google Scholar 

  88. Werthmann, R. C., M. J. Lohse, and M. Bunemann. Temporally resolved cAMP monitoring in endothelial cells uncovers a thrombin-induced [cAMP] elevation mediated via the Ca(2)+-dependent production of prostacyclin. J. Physiol. 589:181–193, 2011.

    Article  PubMed  CAS  Google Scholar 

  89. Williams, D. A. A shear stress component to the modulation of capillary hydraulic conductivity (Lp). Microcirculation 3:229–232, 1996.

    Article  PubMed  CAS  Google Scholar 

  90. Wojciechowski, J. C., and I. H. Sarelius. Preferential binding of leukocytes to the endothelial junction region in venules in situ. Microcirculation 12:349–359, 2005.

    Article  PubMed  CAS  Google Scholar 

  91. Xu, D., T. L. Wang, L. P. Sun, and Q. D. You. Recent progress of small molecular VEGFR inhibitors as anticancer agents. Mini Rev. Med. Chem. 11:18–31, 2011.

    Article  PubMed  CAS  Google Scholar 

  92. Yao, Y., A. Rabodzey, and C. F. Dewey, Jr. Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am. J. Physiol. Heart Circ. Physiol. 293:H1023–H1030, 2007.

    Article  PubMed  CAS  Google Scholar 

  93. Yu, J., S. Bergaya, T. Murata, I. F. Alp, M. P. Bauer, M. I. Lin, M. Drab, T. V. Kurzchalia, R. V. Stan, and W. C. Sessa. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J. Clin. Invest. 116:1284–1291, 2006.

    Article  PubMed  CAS  Google Scholar 

  94. Yuan, Y., H. J. Granger, D. C. Zawieja, and W. M. Chilian. Flow modulates coronary venular permeability by a nitric oxide-related mechanism. Am. J. Physiol. 263:H641–H646, 1992.

    PubMed  CAS  Google Scholar 

  95. Zeng, M., H. Zhang, C. Lowell, and P. He. Tumor necrosis factor-alpha-induced leukocyte adhesion and microvessel permeability. Am. J. Physiol. Heart Circ. Physiol. 283:H2420–H2430, 2002.

    PubMed  CAS  Google Scholar 

  96. Zhang, X., R. H. Adamson, F. E. Curry, and S. Weinbaum. Transient regulation of transport by pericytes in venular microvessels via trapped microdomains. Proc. Natl. Acad. Sci. USA 105:1374–1379, 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the NIH HL28607 and the HL44485. The authors thank Prof. Scott I. Simon for permitting the use of the illustration in Fig. 3a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. Curry.

Additional information

Associate Editor Scott I. Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curry, F.E., Adamson, R.H. Endothelial Glycocalyx: Permeability Barrier and Mechanosensor. Ann Biomed Eng 40, 828–839 (2012). https://doi.org/10.1007/s10439-011-0429-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0429-8

Keywords

Navigation