Skip to main content

Advertisement

Log in

Soft tissue sarcomas with complex genomic profiles

  • Review and Perspective
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Soft tissue sarcomas (STS) with complex genomic profiles (50% of all STS) are predominantly composed of spindle cell/pleomorphic sarcomas, including leiomyosarcoma, myxofibrosarcoma, pleomorphic liposarcoma, pleomorphic rhabdomyosarcoma, malignant peripheral nerve sheath tumor, angiosarcoma, extraskeletal osteosarcoma, and spindle cell/pleomorphic unclassified sarcoma (previously called spindle cell/pleomorphic malignant fibrous histiocytoma). These neoplasms show, characteristically, gains and losses of numerous chromosomes or chromosome regions, as well as amplifications. Many of them share recurrent aberrations (e.g., gain of 5p13-p15) that seem to play a significant role in tumor progression and/or metastatic dissemination. In this paper, we review the cytogenetic, molecular genetic, and clinicopathologic characteristics of the most common STS displaying complex genomic profiles. Features of diagnostic or prognostic relevance will be discussed when needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fletcher CDM, Unni KK, Mertens F (eds) (2002) World Health Organization classification of tumours. Pathology and genetics of tumors of soft tissue and bone. IARC Press, Lyon

    Google Scholar 

  2. Weiss SW, Goldblum JR (2008) In: Weiss SW, Goldblum JR (eds) Enzinger and Weiss’s soft tissue tumors, 5th edn. Mosby-Elsevier, Philadelphia

    Google Scholar 

  3. Dei Tos AP (2006) Classification of pleomorphic sarcomas: where are we now? Histopathology 48:51–62

    CAS  PubMed  Google Scholar 

  4. Sandberg AA (2005) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyosarcoma. Cancer Genet Cytogenet 161:1–19

    PubMed  Google Scholar 

  5. Mandahl N, Fletcher CDM, Dal Cin P et al (2000) Comparative cytogenetic study of spindle cell and pleomorphic leiomyosarcomas of soft tissues: a report from the CHAMP Study Group. Cancer Genet Cytogenet 116:66–73

    CAS  PubMed  Google Scholar 

  6. Yang J, Du X, Chen K et al (2009) Genetic aberrations in soft tissue leiomyosarcoma. Cancer Lett 275:1–8

    CAS  PubMed  Google Scholar 

  7. Fletcher CDM, Dal Cin P, De Wever I et al (1999) Correlation between clinicopathologic features and karyotype in spindle cell sarcomas. A report of 130 cases from the CHAMP Study Group. Am J Pathol 154:1841–1847

    CAS  PubMed  Google Scholar 

  8. Wang R, Titley JC, Lu YJ et al (2003) Loss of 13q14–q21 and gain of 5p14-pter in the progression of leiomyosarcoma. Mod Pathol 16:778–785

    PubMed  Google Scholar 

  9. Hu J, Rao UNM, Jasani S et al (2005) Loss of DNA copy number of 10q is associated with aggressive behavior of leiomyosarcomas: a comparative genomic hybridization study. Cancer Genet Cytogenet 161:20–27

    CAS  PubMed  Google Scholar 

  10. Adamowicz M, Radlwimmer B, Rieker RJ et al (2006) Frequent amplifications and abundant expression of TRIO, NKD2, and IRX2 in soft tissue sarcomas. Genes Chromosomes Cancer 45:829–838

    CAS  PubMed  Google Scholar 

  11. Hernando E, Charytonowicz E, Dudas ME et al (2007) The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med 13:748–753

    CAS  PubMed  Google Scholar 

  12. Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Med 10:594–601

    Google Scholar 

  13. Mita MM, Tolcher AW (2007) The role of mTOR inhibitors for treatment of sarcomas. Current Oncology Reports 9:316–322

    CAS  PubMed  Google Scholar 

  14. Lee YF, John M, Falconer A et al (2004) A gene expression signature associated with metastatic outcome in human leiomyosarcomas. Cancer Res 64:7201–7204

    CAS  PubMed  Google Scholar 

  15. Ren B, Yu YP, Jing L et al (2003) Gene expression analysis of human soft tissue leiomyosarcomas. Hum Pathol 34:549–558

    CAS  PubMed  Google Scholar 

  16. Suehara Y, Kondo T, Fujii K et al (2006) Proteomic signatures corresponding to histological classification and grading of soft-tissue sarcomas. Proteomics 6:4402–4409

    CAS  PubMed  Google Scholar 

  17. Kawaguchi K, Oda Y, Saito T et al (2003) Mechanisms of inactivation of the p16INK4a gene in leiomyosarcoma of soft tissue: decrease. J Pathol 201:487–495

    CAS  PubMed  Google Scholar 

  18. Dei Tos AP, Maestro R, Doglioni C et al (1996) Tumor suppressor genes and related molecules in leiomyosarcoma. Am J Pathol 148:1037–1045

    CAS  PubMed  Google Scholar 

  19. Seidel C, Bartel F, Rastetter M et al (2005) Alterations of cancer-related genes in soft tissue sarcomas: hypermethylation of RASSF1A is frequently detected in leiomyosarcoma and associated with poor prognosis in sarcoma. Int J Cancer 114:442–447

    CAS  PubMed  Google Scholar 

  20. Kawaguchi K, Oda Y, Saito T et al (2006) DNA hypermethylation status of multiple genes in soft tissue sarcomas. Mod Pathol 19:106–114

    CAS  PubMed  Google Scholar 

  21. Francis P, Namlos HM, Müller C et al (2007) Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential. BMC Genomics 8:73

    PubMed  Google Scholar 

  22. Pérot G, Derré J, Coindre JM et al (2009) Strong smooth muscle differentiation is dependent on myocardin gene amplification in most human retroperitoneal leiomyosarcomas. Cancer Res 69:2269–2278

    PubMed  Google Scholar 

  23. Deyrup AT, Lee VK, Hill CE et al (2006) Epstein–Barr virus-associated smooth muscle tumors are distinctive mesenchymal tumors reflecting multiple infection events: a clinicopathologic and molecular analysis of 29 tumors from 19 patients. Am J Surg Pathol 30:75–82

    PubMed  Google Scholar 

  24. Kubben FJGM, Kroon FP, Hogendoorn PCW et al (1997) Absence of Epstein–Barr virus in a gastrointestinal stromal cell tumour (GIST) in an adult human immunodeficiency virus-seropositive patient with past Epstein–Barr virus (EBV) infection. Eur J Gastroent Hepatol 9:721–724

    CAS  Google Scholar 

  25. Moinfar F, Azodi M, Tavassoli FA (2007) Uterine sarcomas. Pathology 39:55–71

    PubMed  Google Scholar 

  26. Quade BJ, Wang TY, Sornberger K et al (2004) Molecular pathogenesis of uterine smooth muscle tumors from transcriptional profiling. Genes Chromosomes Cancer 40:97–108

    CAS  PubMed  Google Scholar 

  27. Miettinen M, Fetsch JF (2006) Evaluation of biological potential of smooth muscle tumours. Histopathology 48:97–105

    CAS  PubMed  Google Scholar 

  28. Fletcher CD (1992) Pleomorphic malignant fibrous histiocytoma: fact or fiction? A critical reappraisal based on 159 tumors diagnosed as pleomorphic sarcoma. Am J Surg Pathol 16:213–228

    Article  CAS  PubMed  Google Scholar 

  29. Fletcher CDM (2006) The evolving classification of soft tissue tumours: an update based on the new WHO classification. Histopathology 48:3–12

    CAS  PubMed  Google Scholar 

  30. Mertens F, Fletcher CDM, Dal Cin P et al (1998) Cytogenetic analysis of 46 pleomorphic soft tissue sarcomas and correlation with morphologic and clinical features: a report of the CHAMP Study Group. Genes Chromosomes Cancer 22:16–25

    CAS  PubMed  Google Scholar 

  31. Derré J, Lagacé R, Nicolas A et al (2001) Leiomyosarcomas and most malignant fibrous histiocytomas share very similar comparative genomic hybridization imbalances: an analysis of a series of 27 leiomyosarcomas. Lab Invest 81:211–215

    PubMed  Google Scholar 

  32. Carneiro A, Francis P, Bendahl PO et al (2009) Indistinguishable genomic profiles and shared prognostic markers in undifferentiated pleomorphic sarcoma and leiomyosarcoma: different sides of a single coin? Lab Invest 89:668–675

    CAS  PubMed  Google Scholar 

  33. Larramendy ML, Gentile M, Soloneski S et al (2008) Does comparative genomic hybridization reveal differences in DNA copy number sequence patterns between leiomyosarcoma and malignant fibrous histiocytoma? Cancer Genet Cytogenet 187:1–11

    CAS  PubMed  Google Scholar 

  34. Kawai A, Kondo T, Suehara Y et al (2008) Global protein-expression analysis of bone and soft tissue sarcomas. Clin Orthop Relat Res 466:2099–2106

    PubMed  Google Scholar 

  35. Mairal A, Terrier P, Chibon F et al (1999) Loss of chromosome 13 is the most frequent genomic imbalance in malignant fibrous histiocytomas: a comparative genomic hybridization analysis of a series of 30 cases. Cancer Genet Cytogenet 111:134–138

    CAS  PubMed  Google Scholar 

  36. Chibon F, Mairal A, Fréneaux P et al (2000) The RB1 gene is the target of chromosome 13 deletions in malignant fibrous histiocytoma. Cancer Res 60:6339–6345

    CAS  PubMed  Google Scholar 

  37. Nakayama R, Nemoto T, Takahashi H et al (2007) Gene expression analysis of soft tissue sarcomas: characterization and reclassification of malignant fibrous histiocytoma. Mod Pathol 20:749–759

    CAS  PubMed  Google Scholar 

  38. Shintani K, Matsumine A, Kusuzaki K et al (2006) Expression of hypoxia-inducible factor (HIF)-I alpha as a biomarker of outcome in soft tissue sarcomas. Virchows Arch 449:673–681

    CAS  PubMed  Google Scholar 

  39. Hunter KW (2004) Ezrin, a key component in tumor metastasis. Trends Mol Med 10:201–204

    CAS  PubMed  Google Scholar 

  40. Kim MS, Cho WH, Song WS et al (2007) Prognostic significance of ezrin expression in pleomorphic malignant fibrous histiocytoma. Anticancer Res 27:1171–1178

    CAS  PubMed  Google Scholar 

  41. Weng WH, Ahlén J, Aström K et al (2005) Prognostic impact of immunohistochemical expression of ezrin in highly malignant soft tissue sarcomas. Clinical Cancer Res 11:6198–6204

    CAS  Google Scholar 

  42. Riggi N, Cironi L, Provero P et al (2005) Development of Ewing’s sarcoma from bone-marrow-derived mesenchymal progenitor cells. Cancer Res 65:11459–11468

    CAS  PubMed  Google Scholar 

  43. Riggi N, Cironi L, Provero P et al (2006) Expression of the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma. Cancer Res 66:7016–7023

    CAS  PubMed  Google Scholar 

  44. Matuschansky I, Hernando E, Socci ND et al (2007) Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J Clin Invest 117:3248–3257

    Google Scholar 

  45. Fletcher CD, Gustafson P, Rydholm A et al (2001) Clinicopathologic re-evaluation of 100 malignant fibrous histiocytomas: prognostic relevance of subclassification. J Clin Oncol 19:3045–3050

    CAS  PubMed  Google Scholar 

  46. Deyrup AT, Haydon RC, Huo D et al (2003) Myoid differentiation and prognosis in adult pleomorphic sarcomas of the extremity: an analysis of 92 cases. Cancer 98:805–813

    PubMed  Google Scholar 

  47. Bui Nguyen Binh M, Guillou L, Hostein I et al (2007) Dedifferentiated liposarcomas with divergent myosarcomatous differentiation developed in the internal trunk. A study of 27 cases and comparison to conventional dedifferentiated liposarcomas and leiomyosarcomas. Am J Surg Pathol 31:1557–1566

    PubMed  Google Scholar 

  48. Montgomery E, Fisher C (2001) Myofibroblastic differentiation in malignant fibrous histiocytoma (pleomorphic myofibrosarcoma): a clinicopathological study. Histopathology 38:499–509

    CAS  PubMed  Google Scholar 

  49. Fisher C (2004) Myofibrosarcoma. Virchows Arch 445:215–223

    PubMed  Google Scholar 

  50. Merck C, Angervall L, Kindblom LG et al (1983) Myxofibrosarcoma. A malignant soft tissue tumor of fibroblastic–histiocytic origin. A clinicopathologic and prognostic study of 110 cases using multivariate analysis. Acta Pathol Microbiol Immunol Scand Suppl 282:1–40

    CAS  PubMed  Google Scholar 

  51. Mentzel T, Calonje E, Wadden C et al (1996) Myxofibrosarcoma: clinicopathologic analysis of 75 cases with emphasis on the low grade variant. Am J Surg Pathol 20:391–405

    CAS  PubMed  Google Scholar 

  52. Huang HY, Lal P, Qin J et al (2004) Low-grade myxofibrosarcoma: a clinicopathologic analysis of 49 cases treated at a single institution with simultaneous assessment of the efficacy of 3-tier and 4-tier grading systems. Hum Pathol 35:612–621

    PubMed  Google Scholar 

  53. Lin CN, Chou SC, Li CF et al (2006) Prognostic factors of myxofibrosarcomas: implications of margin status, tumor necrosis, and mitotic rate on survival. J Surg Oncol 93:294–3043

    PubMed  Google Scholar 

  54. Idbaih A, Coindre JM, Derré J et al (2005) Myxoid malignant fibrous histiocytoma and pleomorphic liposarcoma share very similar genomic imbalances. Lab Invest 85:176–181

    CAS  PubMed  Google Scholar 

  55. Willems SM, Debiec-Rychter M, Szuhai K et al (2006) Local recurrence of myxofibrosarcoma is associated with increased in tumour grade and cytogenetic aberrations, suggesting a multistep tumour progression model. Mod Pathol 19:407–416

    PubMed  Google Scholar 

  56. Willems SM, Mohseny AB, Balog C et al (2009) Cellular/intramuscular myxoma and grade I myxofibrosarcoma are characterized by distinct genetic alterations and specific composition of their extracellular matrix. J Cell Mol Med 13:1291–1301

    CAS  PubMed  Google Scholar 

  57. Nascimento AF, Bertoni F, Fletcher CDM (2007) Epithelioid variant of myxofibrosarcoma: expanding the clinicomorphologic spectrum of myxofibrosarcoma in a series of 17 cases. Am J Surg Pathol 31:99–105

    PubMed  Google Scholar 

  58. Gebhard S, Coindre JM, Michels JJ et al (2002) Pleomorphic liposarcoma: clinicopathologic, immunohistochemical, and follow-up analysis of 63 cases. A study from the French Federation of Cancer Centers Sarcoma Group. Am J Surg Pathol 26:601–616

    PubMed  Google Scholar 

  59. Hornick JL, Bosenberg MW, Mentzel T et al (2004) Pleomorphic liposarcoma. Clinicopathologic analysis of 57 cases. Am J Surg Pathol 28:1257–1267

    PubMed  Google Scholar 

  60. Miettinen M, Enzinger FM (1999) Epithelioid variant of pleomorphic liposarcoma: a study of 12 cases of a distinctive variant of high-grade liposarcoma. Mod Pathol 12:722–728

    CAS  PubMed  Google Scholar 

  61. Sandberg AA (2004) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Liposarcoma. Cancer Genet Cytogenet 155:1–24

    CAS  PubMed  Google Scholar 

  62. Schmidt H, Bartel F, Kappler M et al (2005) Gains of 13q are correlated with a poor prognosis in liposarcoma. Mod Pathol 18:638–644

    CAS  PubMed  Google Scholar 

  63. Taylor BS, Barretina J, Socci ND et al (2008) Functional copy-number alterations in cancer. PLoS ONE 3:e3179

    PubMed  Google Scholar 

  64. Rieker RJ, Joos S, Bartsch C et al (2002) Distinct chromosomal imbalances in pleomorphic and in high-grade dedifferentiated liposarcomas. Int J Cancer 99:68–73

    CAS  PubMed  Google Scholar 

  65. Fritz B, Schubert F, Wrobel G et al (2002) Microarray-based copy number and expression profiling in dedifferentiated and pleomorphic liposarcoma. Cancer Res 62:2993–2998

    CAS  PubMed  Google Scholar 

  66. Singer S, Socci ND, Ambrosini G et al (2007) Gene expression profiling of liposarcoma identifies distinct biological types/subtypes and potential therapeutic targets in well-differentiated and dedifferentiated liposarcoma. Cancer Res 67:6626–6636

    CAS  PubMed  Google Scholar 

  67. Matuschansky I, Hernando E, Socci ND et al (2008) A development model of sarcomagenesis defines a differentiation-based classification for liposarcomas. Am J Pathol 172:1069–1080

    Google Scholar 

  68. Dei Tos AP, Mentzel T, Fletcher CDM (1998) Primary liposarcoma of the skin: a rare neoplasm with unusual high grade features. Am J Dermatopathol 20:332–338

    CAS  PubMed  Google Scholar 

  69. Furlong MA, Mentzel T, Fanburg-Smith JC (2001) Pleomorphic rhabdomyosarcoma in adults: a clinicopathologic study of 38 cases with emphasis on morphologic variants and recent skeletal muscle-specific markers. Mod Pathol 14:595–603

    CAS  PubMed  Google Scholar 

  70. Furlong MA, Fanburg-Smith JC (2001) Pleomorphic rhabdomyosarcoma in children: four cases in the pediatric age group. Ann Diagn Pathol 5:199–206

    CAS  PubMed  Google Scholar 

  71. Little DJ, Ballo MT, Zagars GK et al (2002) Adult rhabdomyosarcoma. Outcome following multimodality treatment. Cancer 95:377–388

    PubMed  Google Scholar 

  72. Parham DM, Ellison DA (2006) Rhabdomyosarcomas in adults and children. An update. Arch Pathol Lab Med 130:1454–1465

    PubMed  Google Scholar 

  73. Li G, Ogose A, Kawashima H et al (2009) Cytogenetic and real-time quantitative reverse-transcriptase polymerase chain reaction analyses in pleomorphic rhabdomyosarcoma. Cancer Genet Cytogenet 192:1–9

    PubMed  Google Scholar 

  74. Gordon A, McManus A, Anderson J et al (2003) Chromosomal imbalances in pleomorphic rhabdomyosarcomas and identification of the alveolar rhabdomyosarcoma-associated PAX3-FOXO1A fusion gene in one case. Cancer Genet Cytogenet 140:73–77

    CAS  PubMed  Google Scholar 

  75. Scheithauer BW, Louis DN, Hunter S et al (2007) Malignant peripheral nerve sheath tumour (MPNST). In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) World Health Organization classification of tumours of the central nervous system. IARC, Lyon, pp 160–162

    Google Scholar 

  76. Mertens F, Dal Cin P, De Wever I et al (2000) Cytogenetic characterization of peripheral nerve sheath tumours: a report of the CHAMP Study Group. J Pathol 190:31–38

    CAS  PubMed  Google Scholar 

  77. Bridge RS, Bridge JA, Neff JR et al (2004) Recurrent chromosomal imbalances and structurally abnormal breakpoints within complex karyotypes of malignant peripheral nerve sheath tumour and malignant Triton tumor: a cytogenetic and molecular cytogenetic study. J Clin Pathol 57:1172–1178

    CAS  PubMed  Google Scholar 

  78. Kresse SH, Skarn M, Ohnstad HO et al (2008) DNA copy number changes in high-grade malignant peripheral nerve sheath tumors by array CGH. Mol Cancer 7:48

    PubMed  Google Scholar 

  79. Storlazzi CT, Brekke HR, Mandahl N et al (2006) Identification of a novel amplicon at distal 17q containing the BIRC5/survivin gene in malignant peripheral nerve sheath tumours. J Pathol 209:492–500

    CAS  PubMed  Google Scholar 

  80. Schmidt H, Würl P, Taubert H et al (1999) Genomic imbalances in 7p and 17q in malignant peripheral nerve sheath tumors are clinically relevant. Genes Chromosomes Cancer 25:205–211

    CAS  PubMed  Google Scholar 

  81. Skotheim RI, Kallioniemi A, Bjerkhagen B et al (2003) Topoisomerase-II α is upregulated in malignant peripheral nerve sheath tumors and associated with clinical outcome. J Clin Oncol 21:4586–4591

    CAS  PubMed  Google Scholar 

  82. Schmidt H, Taubert H, Würl P et al (2001) Cytogenetic characterization of six malignant peripheral nerve sheath tumors: comparison of karyotyping and comparative genomic hybridization. Cancer Genet Cytogenet 128:14–23

    CAS  PubMed  Google Scholar 

  83. Mantripragada KK, Spurlock G, Kluwe L et al (2008) High-resolution DNA copy number profiling of malignant peripheral nerve sheath tumors using targeted microarray-based comparative genomic hybridization. Clinical Cancer Res 14:1015–1024

    CAS  Google Scholar 

  84. Carroll SL, Stonecypher MS (2004) Tumor suppressor mutations and growth factor signalling in the pathogenesis of NF1-associated peripheral nerve sheath tumors. I. The role of tumor suppressor mutations. J Neuropathol Exp Neurol 63:1115–1123

    CAS  PubMed  Google Scholar 

  85. Przygodzki RM, Finkelstein SD, Keohavong P et al (1997) Sporadic and thorotrast-induced angiosarcomas of the liver manifest frequent and multiple point mutations in KRAS-2. Lab Invest 76:153–159

    CAS  PubMed  Google Scholar 

  86. Naka N, Tomita Y, Nakanishi H et al (1997) Mutations of p53 tumor suppressor gene in angiosarcoma. Int J Cancer 71:952–955

    CAS  PubMed  Google Scholar 

  87. Zietz C, Rossle M, Haas C et al (1998) MDM2 oncoprotein overexpression, p53 gene mutation, and VEGF upregulation in angiosarcomas. Am J Pathol 153:1425–1433

    CAS  PubMed  Google Scholar 

  88. Domfeh AB, Fichera M, Hunt JL (2006) Allelic loss of 3 different tumor suppressor gene loci in benign and malignant endothelial tumors of the head and neck. Arch Pathol Lab Med 130:1184–1187

    CAS  PubMed  Google Scholar 

  89. Ahmad SA, Patel SR, Ballo MT et al (2002) Extraosseous osteosarcoma: response to treatment and long-term outcome. J Clin Oncol 20:521–527

    PubMed  Google Scholar 

  90. Jensen ML, Schumacher B, Jensen OM et al (1998) Extraskeletal osteosarcomas. A clinicopathologic study of 25 cases. Am J Surg Pathol 22:588–594

    Google Scholar 

  91. Mertens F, Larramendy M, Gustavsson A et al (2000) Radiation-associated sarcomas are characterized by complex karyotypes with frequent rearrangements of chromosome arm 3p. Cancer Genet Cytogenet 116:89–96

    CAS  PubMed  Google Scholar 

  92. Mohamed AN, Zalupski MM, Ryan JR et al (1997) Cytogenetic aberrations and DNA ploidy in soft tissue sarcoma. A southwest oncology group study. Cancer Genet Cytogenet 99:45–53

    CAS  PubMed  Google Scholar 

  93. Lau CC, Harris CP, Lu XY et al (2004) Frequent amplification and rearrangement of chromosomal bands 6p12–p21 and 17p11.2 in osteosarcoma. Genes Chromosomes Cancer 39:11–21

    PubMed  Google Scholar 

  94. Selvarajah S, Yoshimoto M, Ludkovski O et al (2008) Genomic signatures of chromosomal instability and osteosarcoma progression detected by high resolution array CGH and interphase FISH. Cytogenet Genome Res 122:5–15

    CAS  PubMed  Google Scholar 

  95. Bayani J, Zielenska M, Pandita A et al (2003) Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas. Genes Chromosomes Cancer 36:7–16

    CAS  PubMed  Google Scholar 

  96. Bridge JA, Nelson M, McComb E et al (1997) Cytogenetic findings in 73 osteosarcoma specimens and a review of the literature. Cancer Genet Cytogenet 95:74–87

    CAS  PubMed  Google Scholar 

  97. Sandberg AA, Bridge JA (2003) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Osteosarcoma and related tumors. Cancer Genet Cytogenet 145:1–30

    CAS  PubMed  Google Scholar 

  98. Montgomery EA, Devaney KO, Giordano TJ et al (1998) Inflammatory myxohyaline tumor of distal extremities with virocyte or Reed-Sternberg-like cells: a distinctive lesion with features simulating inflammatory conditions, Hodgkin's disease, and various sarcomas. Mod Pathol 11:384–391

    CAS  PubMed  Google Scholar 

  99. Meis-Kindblom JM, Kindblom LG (1998) Acral myxoinflammatory fibroblastic sarcoma: a low-grade tumor of the hands and feet. Am J Surg Pathol 22:911–924

    CAS  PubMed  Google Scholar 

  100. Lambert I, Debiec-Rychter M, Guelinckx P et al (2001) Acral myxoinflammatory fibroblastic sarcoma with unique clonal chromosomal changes. Virchows Arch 438:509–512

    CAS  PubMed  Google Scholar 

  101. Baumhoer D, Glatz K, Schulten H-J et al (2007) Myxoinflammatory fibroblastic sarcoma: investigations by comparative genomic hybridization of two cases and review of the literature. Virchows Arch 451:923–928

    PubMed  Google Scholar 

  102. Mansoor A, Fidda N, Himoe E et al (2004) Myxoinflammatory fibroblastic sarcoma with complex supernumerary ring chromosomes composed of chromosome 3 segments. Cancer Genet Cytogenet 152:61–65

    CAS  PubMed  Google Scholar 

  103. Hallor KH, Sciot R, Staaf J et al (2009) Two genetic pathways, t(1;10) and amplification of 3p11–12, in myxoinflammatory fibroblastic sarcoma, haemosiderotic fibrolipomatous tumour, and morphologically similar lesions. J Pathol 217:716–727

    CAS  PubMed  Google Scholar 

  104. Ida CM, Rolig KA, Hulshizer RL et al (2007) Myxoinflammatory fibroblastic sarcoma showing t(2;6)(q31;p21.3) as a sole cytogenetic abnormality. Cancer Genet Cytogenet 177:139–142

    CAS  PubMed  Google Scholar 

  105. Laskin WB, Silverman TA, Enzinger FM (1998) Postradiation soft tissue sarcomas. An analysis of 53 cases. Cancer 62:2330–2340

    Google Scholar 

  106. Wiklund TA, Blomqvist CP, Raty J et al (1991) Postirradiation sarcoma. Analysis of a nationwide cancer registry material. Cancer 68:524–531

    CAS  PubMed  Google Scholar 

  107. Lagrange JL, Ramaioli A, Chateau MC et al (2000) Sarcoma after radiation therapy: retrospective multi institutional study of 80 histologically confirmed cases. Radiation therapist and pathologist groups of the Federation Nationale des Centres de Lutte Contre le Cancer. Radiology 216:197–205

    CAS  PubMed  Google Scholar 

  108. Inoue YZ, Frassica FJ, Sim FH et al (2000) Clinicopathologic features and treatment of postirradiation sarcoma of bone and soft tissue. J Surg Oncol 75:42–50

    CAS  PubMed  Google Scholar 

  109. Nakanishi H, Tomita Y, Myoui A et al (1998) Mutation of the p53 gene in postradiation sarcoma. Lab Invest 78:727–733

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Guillou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillou, L., Aurias, A. Soft tissue sarcomas with complex genomic profiles. Virchows Arch 456, 201–217 (2010). https://doi.org/10.1007/s00428-009-0853-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-009-0853-4

Keywords

Navigation