Skip to main content
Log in

Effects of neuromuscular electrical stimulation parameters on specific tension

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study examined the effects of altering surface neuromuscular electrical stimulation (SNMES) parameters on the specific tension of the quadriceps femoris muscle. Seven able-bodied subjects had magnetic resonance images taken of both thighs prior to and immediately after four SNMES protocols to determine the activated muscle cross-sectional area (CSA). The four protocols were: (1) research (RES, 100 Hz, 450 μs, and amplitude set to evoke 75% of maximal voluntary isometric torque, MVIT); (2) pulse duration (PD, 100 Hz, 150 μs, same current as in RES); (3) frequency (FREQ, 25 Hz, 450 μs, and same current as in RES); (4) amplitude (AMP, 100 Hz, 450 μs, and current set to evoke the average of the initial torques of PD and FREQ, 45 ± 9% of MVIT). Reducing the amplitude of the current from 75 to 45% of MVIT did not alter specific tension, 25 ± 8 N/cm2, suggesting that the amplitude probably affects torque and the area of activated muscle proportionally. Shortening the pulse duration from 450 to 150 μs caused specific tension to drop from 25 ± 6 to 20 ± 6 N/cm2 (P < 0.05), indicating that pulse duration increased torque and the activated CSA disproportionally. Alternatively, reducing the frequency from 100 to 25 Hz decreased specific tension from 25 ± 6 to 17 ± 4 N/cm2 (P < 0.05), suggesting that the frequency increased torque without affecting the activated CSA. Clinicians who administer SNMES should be aware of the magnitude of adaptations to a given amplitude, pulse duration, and frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams GR, Harris RT, Woodard D, Dudley GA (1993) Mapping of electrical muscle stimulation using MRI. J Appl Physiol 74:532–537

    PubMed  CAS  Google Scholar 

  • Akima H, Kuno S, Takahashi H, Fukunaga T, Katsuta S (2000) The use of magnetic resonance images to investigate the influence of recruitment on the relationship between torque and cross-sectional area in human muscle. Eur J Appl Physiol 83:475–480

    Article  PubMed  CAS  Google Scholar 

  • Akima H, Foley JM, Prior BM, Dudley GA, Meyer RA (2002) Vastus lateralis fatigue alters recruitment of musculus quadriceps femoris in humans. J Appl Physiol 92:679–684

    PubMed  Google Scholar 

  • Armstrong RB, Essen-Gustavsson B, Hoppeler H, Jones JH, Kayar SR, Laughlin MH, Lindholm A, Longworth KE, Taylor CR, Weibel ER (1992) O2 delivery at VO2max and oxidative capacity in muscles of standardbred horses. J Appl Physiol 73:2274–2282

    PubMed  CAS  Google Scholar 

  • Baltzopoulos V (1995) A videofluoroscopy method for optical distortion correction and measurement of knee-joint kinematics. Clin Biomech (Bristol, Avon) 10:85–92

    Article  Google Scholar 

  • Bickel CS, Slade JM, Dudley GA (2004) Long-term spinal cord injury increases susceptibility to isometric contraction-induced muscle injury. Eur J Appl Physiol 91:308–313

    Article  PubMed  Google Scholar 

  • Bodine SC, Roy RR, Eldred E, Edgerton VR (1987) Maximal force as a function of anatomical features of motor units in the cat tibialis anterior. J Neurophysiol 57:1730–1745

    PubMed  CAS  Google Scholar 

  • Bridges CR Jr, Clark BJ III, Hammond RL, Stephenson LW (1991) Skeletal muscle bioenergetics during frequency-dependent fatigue. Am J Physiol 260:C643–C651

    PubMed  Google Scholar 

  • Collins DF, Burk D, Gandevia SC (2002) Sustained contractions produced by plateau-like behavior in human motoneurones. J Physiol 1 538(Pt 1):289–301

    Article  CAS  Google Scholar 

  • Conley MS, Foley JM, Ploutz-Snyder LL, Meyer RA, Dudley GA (1996) Effect of acute head-down tilt on skeletal muscle cross-sectional area and proton transverse relaxation time. J Appl Physiol 81(4):1572–1577

    PubMed  CAS  Google Scholar 

  • Conwit RA, Tracy B, Cowl A, McHugh M, Stashuk D, Brown WF, Metter EJ (1998) Firing rate analysis using decomposition-enhanced spike triggered averaging in the quadriceps femoris. Muscle Nerve 10:1338–1340

    Article  Google Scholar 

  • Delitto A, Strube MJ, Shulman AD, Minor SD (1992) A study of discomfort with electrical stimulation. Phys Ther 72:410–421

    PubMed  CAS  Google Scholar 

  • Dudley GA, Harris RT, Duvoisin MR, Hather BM, Buchanan P (1990) Effect of voluntary vs. artificial activation on the relationship of muscle torque to speed. J Appl Physiol 69:2215–2221

    PubMed  CAS  Google Scholar 

  • Edgerton VR, Roy RR (1991) Regulation of skeletal muscle fiber size, shape and function. J Biomech 24(Suppl 1):123–133

    Article  PubMed  Google Scholar 

  • Edgerton VR, Apor P, Roy RR (1990) Specific tension of human elbow flexor muscles. Acta Physiol Hung 75:205–216

    PubMed  CAS  Google Scholar 

  • Fisher MJ, Meyer RA, Adans GR, Foley GM, Potchen EJ (1990) Direct relationships between proton T2 and exercise intensity in skeletal muscle MR images. Invest Radiol 25:480–485

    Article  PubMed  CAS  Google Scholar 

  • Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74:49–94

    PubMed  CAS  Google Scholar 

  • Fukunaga T, Roy RR, Shellock FG, Hodgson JA, Day MK, Lee PL, Kwong-Fu H, Edgerton VR (1992) Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J Orthop Res 10:928–934

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga T, Roy RR, Shellock FG, Hodgson JA, Edgerton VR (1996) Specific tension of human plantar flexors and dorsiflexors. J Appl Physiol 80:158–165

    PubMed  CAS  Google Scholar 

  • Fukunaga T, Ichinose Y, Ito M, Kawakami Y, Fukashiro S (1997) Determination of fascicle length and pennation in a contracting human muscle in vivo. J Appl Physiol 82:354–358

    PubMed  CAS  Google Scholar 

  • Gregory CM, Bickel CS (2005) Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 85:358–364

    PubMed  Google Scholar 

  • Harris RT, Dudley GA (1994) Factors limiting force during slow, shortening actions of the quadriceps femoris muscle group in vivo. Acta Physiol Scand 152:63–71

    PubMed  CAS  Google Scholar 

  • Hillegass EA, Dudley GA (1999) Surface electrical stimulation of skeletal muscle after spinal cord injury. Spinal Cord 37:251–257

    Article  PubMed  CAS  Google Scholar 

  • Hultman E, Sjoholm H, Jaderholm-Ek I, Krynicki J (1983) Evaluation of methods for electrical stimulation of human skeletal muscle in situ. Pflugers Arch 398:139–141

    Article  PubMed  CAS  Google Scholar 

  • Ichinose Y, Kawakami Y, Ito M, Fukunaga T (1997) Estimation of active force–length characteristics of human vastus lateralis muscle. Acta Anat (Basel) 159:78–83

    CAS  Google Scholar 

  • Knaflitz M, Merletti R, De Luca CJ (1990) Inference of motor unit recruitment order in voluntary and electrically elicited contractions. J Appl Physiol 68:1657–1667

    PubMed  CAS  Google Scholar 

  • Lieber RL, Kelly MJ (1991) Factors influencing quadriceps femoris muscle torque using transcutaneous neuromuscular electrical stimulation. Phys Ther 71:715–721

    PubMed  CAS  Google Scholar 

  • Lieber RL, Kelly MJ (1993) Torque history of electrically stimulated human quadriceps: implications for stimulation therapy. J Orthop Res 11:131–141

    Article  PubMed  CAS  Google Scholar 

  • Maganaris CN, Baltzopoulos V, Sargeant AJ (1998) Changes in Achilles tendon moment arm from rest to maximum isometric plantarflexion: in vivo observations in man. J Physiol 510(Pt 3):977–985

    Article  PubMed  CAS  Google Scholar 

  • Maganaris CN, Baltzopoulos V, Ball D, Sargeant AJ (2001) In vivo specific tension of human skeletal muscle. J Appl Physiol 90:865–872

    PubMed  CAS  Google Scholar 

  • Narici MV, Landoni L, Minetti AE (1992) Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurements. Eur J Appl Physiol Occup Physiol 65:438–444

    Article  PubMed  CAS  Google Scholar 

  • Panizza M, Nilsson J, Roth BJ, Grill SE, Demirci M, Hallett M (1998) Differences between the time constant of sensory and motor peripheral nerve fibers: further studies and considerations. Muscle Nerve 21(1):48–54

    Article  PubMed  CAS  Google Scholar 

  • Reeves ND, Narici MV, Maganaris CN (2004) Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol 96:885–892

    Article  PubMed  CAS  Google Scholar 

  • Trappe TA, Lindquist DM, Carrithers JA (2001) Muscle-specific atrophy of the quadriceps femoris with aging. J Appl Physiol 90:2070–2074

    PubMed  CAS  Google Scholar 

  • Triolo R, Robinson D, Gardner E, Betz R (1987) The eccentric strength of electrically stimulated paralyzed muscle. IEEE Trans Biomed Eng 9:651–652

    Google Scholar 

  • Westing SH, Seger JY, Thorstensson A (1990) Effects of electrical stimulation on eccentric and concentric torque–velocity relationships during knee extension in man. Acta Physiol Scand 140:17–22

    Article  PubMed  CAS  Google Scholar 

  • Wickiewicz TL, Roy RR, Powell PL, Edgerton VR (1983) Muscle architecture of the human lower limb. Clin Orthop Relat Res 275–283

  • Wickiewicz TL, Roy RR, Powell PL, Perrine JJ, Edgerton VR (1984) Muscle architecture and force–velocity relationships in humans. J Appl Physiol 57:435–443

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the subjects participated in this study. We also appreciate Chris Black and Carolyn Sharp for their technical expertise and Drs. Kevin McCully and Jill Slade for their helpful comments during the preparation of the manuscript. This study was supported by NIH grants to G.A.D. (Grants No.: HD39679 and HD39676S2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf S. Gorgey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorgey, A.S., Mahoney, E., Kendall, T. et al. Effects of neuromuscular electrical stimulation parameters on specific tension. Eur J Appl Physiol 97, 737–744 (2006). https://doi.org/10.1007/s00421-006-0232-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-006-0232-7

Keywords

Navigation