Skip to main content

Advertisement

Log in

Analysis of myelinated fibers in human skin biopsies of patients with neuropathies

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Given the availability of effective but costly treatment for acquired demyelinating neuropathies, biomarkers for these disorders are urgently needed. Here we aimed to quantify morphological abnormalities of myelinated fibers in skin biopsies from the proximal leg of patients with neuropathies to determine a potential diagnostic role of this method. We used double immunofluorescence to detect myelinated and unmyelinated fibers in thigh skin from 81 patients with polyneuropathy, 19 patients with small fiber neuropathy, and 25 controls. Dermal myelinated fibers were reduced 6.8-fold in patients with polyneuropathy (p < 0.0001). The number of dermal nerve bundles with myelinated fibers was reduced 2.7-fold (p = 0.0025). In small fiber neuropathy, myelinated fibers in dermal nerve bundles were only reduced in the length-dependent type, indicating that this subgroup may represent an early stage of generalized polyneuropathy. Elongated nodes of Ranvier were detectable in demyelinating neuropathies only. Our data suggest that changes in the number and morphology of myelinated fibers in the proximal leg can confirm the diagnosis of neuropathy, and may help to distinguish between demyelinating and axonal neuropathy, and to differentiate pure small fiber neuropathy from early polyneuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society–First Revision (2010). J Peripher Nerv Syst 15(1):1–9. doi:10.1111/j.1529-8027.2010.00245.x

    Google Scholar 

  2. Nolano M, Provitera V, Crisci C, Stancanelli A, Wendelschafer-Crabb G, Kennedy WR, Santoro L (2003) Quantification of myelinated endings and mechanoreceptors in human digital skin. Ann Neurol 54(2):197–205. doi:10.1002/ana.10615

    Article  PubMed  Google Scholar 

  3. Provitera V, Nolano M, Pagano A, Caporaso G, Stancanelli A, Santoro L (2007) Myelinated nerve endings in human skin. Muscle Nerve 35(6):767–775. doi:10.1002/mus.20771

    Article  PubMed  Google Scholar 

  4. Li J, Bai Y, Ghandour K, Qin P, Grandis M, Trostinskaia A, Ianakova E, Wu X, Schenone A, Vallat JM, Kupsky WJ, Hatfield J, Shy ME (2005) Skin biopsies in myelin-related neuropathies: bringing molecular pathology to the bedside. Brain 128(Pt 5):1168–1177. doi:10.1093/brain/awh483

    Article  PubMed  Google Scholar 

  5. Saporta MA, Katona I, Lewis RA, Masse S, Shy ME, Li J (2009) Shortened internodal length of dermal myelinated nerve fibres in Charcot-Marie-Tooth disease type 1A. Brain 132(Pt 12):3263–3273. doi:10.1093/brain/awp274

    Article  PubMed  Google Scholar 

  6. Hughes R, Bensa S, Willison H, Van den Bergh P, Comi G, Illa I, Nobile-Orazio E, van Doorn P, Dalakas M, Bojar M, Swan A (2001) Randomized controlled trial of intravenous immunoglobulin versus oral prednisolone in chronic inflammatory demyelinating polyradiculoneuropathy. Ann Neurol 50(2):195–201

    Article  PubMed  CAS  Google Scholar 

  7. Devigili G, Tugnoli V, Penza P, Camozzi F, Lombardi R, Melli G, Broglio L, Granieri E, Lauria G (2008) The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain 131(Pt 7):1912–1925. doi:10.1093/brain/awn093

    Article  PubMed  Google Scholar 

  8. Üçeyler N, Kafke W, Riediger N, He L, Necula G, Toyka KV, Sommer C (2010) Elevated proinflammatory cytokine expression in affected skin in small fiber neuropathy. Neurology 74(22):1806–1813. doi:10.1212/WNL.0b013e3181e0f7b3

    Article  PubMed  Google Scholar 

  9. Wendelschafer-Crabb G, Kennedy WR, Walk D (2006) Morphological features of nerves in skin biopsies. J Neurol Sci 242(1–2):15–21. doi:10.1016/j.jns.2005.11.010

    Article  PubMed  CAS  Google Scholar 

  10. Lauria G, Cazzato D, Porretta-Serapiglia C, Casanova-Molla J, Taiana M, Penza P, Lombardi R, Faber CG, Merkies IS (2011) Morphometry of dermal nerve fibers in human skin. Neurology 77(3):242–249. doi:10.1212/WNL.0b013e318225ab51

    Article  PubMed  CAS  Google Scholar 

  11. Russell JW, Karnes JL, Dyck PJ (1996) Sural nerve myelinated fiber density differences associated with meaningful changes in clinical and electrophysiologic measurements. J Neurol Sci 135(2):114–117

    Article  PubMed  CAS  Google Scholar 

  12. Herrmann DN, Griffin JW, Hauer P, Cornblath DR, McArthur JC (1999) Epidermal nerve fiber density and sural nerve morphometry in peripheral neuropathies. Neurology 53(8):1634–1640

    Article  PubMed  CAS  Google Scholar 

  13. Faber CG, Hoeijmakers JG, Ahn HS, Cheng X, Han C, Choi JS, Estacion M, Lauria G, Vanhoutte EK, Gerrits MM, Dib-Hajj S, Drenth JP, Waxman SG, Merkies IS (2011) Gain of function Na(V) 1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 71(1):26–39. doi:10.1002/ana.22485

    Article  PubMed  CAS  Google Scholar 

  14. Gorson KC, Herrmann DN, Thiagarajan R, Brannagan TH, Chin RL, Kinsella LJ, Ropper AH (2008) Non-length dependent small fibre neuropathy/ganglionopathy. J Neurol Neurosurg Psychiatry 79(2):163–169. doi:10.1136/jnnp.2007.128801

    Article  PubMed  CAS  Google Scholar 

  15. Sghirlanzoni A, Pareyson D, Lauria G (2005) Sensory neuron diseases. Lancet Neurol 4(6):349–361. doi:10.1016/S1474-4422(05)70096-X

    Article  PubMed  CAS  Google Scholar 

  16. Ebenezer GJ, McArthur JC, Thomas D, Murinson B, Hauer P, Polydefkis M, Griffin JW (2007) Denervation of skin in neuropathies: the sequence of axonal and Schwann cell changes in skin biopsies. Brain 130(Pt 10):2703–2714. doi:10.1093/brain/awm199

    Article  PubMed  Google Scholar 

  17. Gibbons CH, Griffin JW, Polydefkis M, Bonyhay I, Brown A, Hauer PE, McArthur JC (2006) The utility of skin biopsy for prediction of progression in suspected small fiber neuropathy. Neurology 66(2):256–258. doi:10.1212/01.wnl.0000194314.86486.a2

    Article  PubMed  CAS  Google Scholar 

  18. Lauria GMM, Lombardi R, Borgna M, Mazzoleni G, Sghirlanzoni A, Pareyson D (2003) Axonal swellings predict the degeneration of epidermal nerve fibers in painful neuropathies. Neurology 61(5):631–636

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Barbara Dekant for technical assistance. The authors’ work was supported by intramural funds of the University of Würzburg.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Doppler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doppler, K., Werner, C., Henneges, C. et al. Analysis of myelinated fibers in human skin biopsies of patients with neuropathies. J Neurol 259, 1879–1887 (2012). https://doi.org/10.1007/s00415-012-6432-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-012-6432-7

Keywords

Navigation